
Name Solution

Computer Architecture

EE 4720

Final Examination

6 December 2010, 7:30–9:30 CST

Alias On File

Problem 1 (10 pts)

Problem 2 (14 pts)

Problem 3 (14 pts)

Problem 4 (14 pts)

Problem 5 (15 pts)

Problem 6 (15 pts)

Problem 7 (18 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: (10 pts) The diagram below shows a 5-stage pipeline that looks alot like our familiar MIPS
implementation but it’s actually an implementation of ISA X. (The diagram is based on the solution to
Homework 3, in which a shift unit was added to MIPS.)

format

immed

IR

Addr

20:16

9:5

IF
 ID
 EX
 WB
ME

rs1v

rs2v

IMM

NPC

ALU
Addr

Data

Data

Addr

D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst

NPC

=

30
 2

2’b0

+

25:0

29:26

29:0

0
1

VIN

VOUT

sign in

AMT

DIR (1=left)

s

a

mx

d

4:0

4:0

is Shift

10:10

12:12

11:11

31:31

shf

mx

im5

5b0

5b31

25:21

31:26

15:10

(a) ISA X instruction format T encodes the shift instructions and others, it is the equivalent of format R in
MIPS. Based on the diagram above show the encoding for ISA X format T.

�Format T encoding, including bit positions and field names.

Solution appears below. The source registers are named rs1 and rs2, those names are taken from the ID/EX pipeline latches, the

bit positions at the input to the register file provide their place in the instruction encoding. The input to the is Shift unit provide
the location of the opcode fields. Through its connection to the shifter one finds that bits 4:0 are the equivalent of the MIPS sa

field. The mux at the input to the dst pipeline latch provides the destination register field bits, 25:21.

Encoding:

Opc

31 26

rd

25 21

rs1

20 16

opT

15 10

rs2

9 5

im5

4 0

(b) Consider the shift instructions sll, sllv, srl, srlv, sra, and srav. Suppose that the encoding of one
of these instructions is zero (meaning that every field value is zero). Show the opcode field value(s) for each
of these instructions based on the diagram above. Hint: The control signal for each top mux input is 0, etc.

�Opcode field value(s) for: sll, sllv, srl, srlv, sra, and srav.

From inspection of the diagram we see that bit 10 determines whether the shift is arithmetic (signed) (bit 10 is 1) or logical (unsigned)
(bit 10 is 0). From inspection of the diagram we see that bit 11 determines whether the shift amount is obtained from the rs1
register (possibly bypassed) or if bit 11 is 1 whether the shift amount is obtained from the im5 field. From inspection of the diagram
we see that bit 12 indicates the direction, with 1 for a left shift. Since one of the shift instructions has a zero opcode, the opc field
must be zeros and bits 15:13 of opT must be zero. Putting these bits together we get the opT values shown below:

Solution:

sll sllv srl srlv sra srav

110 100 010 000 011 001 <- Bits 12, 11, and 10

000110 000100 000010 000000 000011 000001 <- Full opT value.

2

(c) Explain why the implementation of instructions such as sw r1,2(r3) and beq r1, r2 TARG would be
less elegant for ISA X than for MIPS. Hint: It has something to do with registers.

� sw and beq less elegant because...

Consider instructions lw r1,2(r3) and sw r1,2(r3). In MIPS these can use the same format because the rt field can be
either a destination (as its used for lw) or as a source (as its used for sw). But in ISA X , based upon the diagram above, there is
only one destination field. So the lw encoding might be in a format where the rs2 field is omitted (and so bits 9:5 can be part of
the immediate) while the sw instruction would be in a format where rd was omitted. As a result the format immed unit needs
to pick different sets of bits based on format.

3

Problem 2: (14 pts) Answer the questions below.

(a) Complete the execution diagram for the MIPS code below on a two-way superscalar statically scheduled
implementation of the type described in class.

SOLUTION

Cycle 0 1 2 3 4 5 6 7 8

add r1, r2, r3 IF ID EX ME WB

add r4, r5, r6 IF ID EX ME WB

add r7, r4, r8 IF ID EX ME WB

lw r9, 0(r7) IF ID -> EX ME WB

addi r1, r9, 3 IF -> ID -> EX ME WB

xor r10, r11, r12 IF -> ID -> EX ME WB

Cycle 0 1 2 3 4 5 6 7 8

�Complete the diagram above.

The solution appears above. The lw stalls due to a dependence on the preceding add. Notice that the stall affects all following
instructions. That is, though in cycle 3 the lw is stalled in ID1 the ID0 stage is empty. It would be possible to design the pipeline
so that the addi could move into ID0 in cycle 3, however that would greatly complicate control logic since instructions would be
out of order. (The instruction in ID0 would come after the one in ID1 in program order, whereas usually the instruction in ID0 is
before the one in ID1.) So to keep instructions in order the addi must stall.

(b) Show the execution of the code below on an 8-way superscalar statically scheduled processor of the type
described in class. Branches are not predicted. Find the CPI for a large number of iterations.

SOLUTION

LOOP: # Cyc 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

and r1, r1, r5 IF ID EX ME WB

add r3, r3, r1 IF ID -> EX ME WB

lw r1, 0(r2) IF ID -> EX ME WB

bne r2, r4 LOOP IF ID -> EX ME WB

addi r2, r2, 4 IF ID -> EX ME WB

or IF ID -> x

or IF ID -> x

or IF ID -> x

xor IF -> x

xor IF -> x # Six more instructions squashed.

LOOP: # Cyc 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

and r1, r1, r5 IF ID EX ME WB

add r3, r3, r1 IF ID -> EX ME WB

lw r1, 0(r2) IF ID -> EX ME WB

bne r2, r4 LOOP IF ID -> EX ME WB

addi r2, r2, 4 IF ID -> EX ME WB

or IF ID -> x

or IF ID -> x

or IF ID -> x

xor IF -> x

xor IF -> x # Six more instructions squashed.

LOOP: # Cyc 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

and r1, r1, r5 IF ID EX ME WB

4

�Complete diagram above for enough iterations to determine CPI.

The solution appears above.

�Find the CPI for a large number of iterations.

The third iteration starts, in cycle 6, with the pipeline in the same state as the start of the second iteration, in cycle 3. (The pipeline
state is and in ME, add, lw, bne, and addi are all in EX, etc.) Therefore the time for the second iteration, 6− 3 = 3 cycles will

be the same as the time of the third. The CPI is then 6−3

5
CPI .

5

(c) Complete the execution diagram for the MIPS code below on a two-way superscalar dynamically scheduled
implementation of the type described in class. The execution of the first instruction is shown. The lw

instruction uses stages EA and ME in place of EX.

Solution

LOOP: # Cyc 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

add r1, r2, r3 IF ID Q RR EX WB C

add r4, r5, r6 IF ID Q RR EX WB C

add r7, r4, r8 IF ID Q RR EX WB C

lw r9, 0(r7) IF ID Q RR EA ME WB C

addi r1, r9, 3 IF ID Q RR EX WB C

xor r10, r11, r12 IF ID Q RR EX WB C

LOOP: # Cyc 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

�Complete diagram above.

Solution appears above. Notice that the dependence chain from the add r4 through the lw and addi does not affect when the
xor executes, though it does delay its commit.

Some important things to remember: Commit must occur in program order. Since the processor is 2-way superscalar at most two
instructions per cycle can commit (by default for classroom examples).

6

Problem 3: (14 pts) A deeply pipelined MIPS implementation can be constructed by dividing some stages
of our familiar 5-stage statically scheduled scalar implementation (shown below) into two or more parts. In
this problem the technique is applied to construct several 8-stage implementations. All have just one ID and
WB stage, and in all implementations it takes 4.4 ns for an instruction to pass through all 8 stages, from the
beginning of IF1 to end of WB1. The stages are divided without changing what they do. For example, if an
“original” MIPS stage, say EX, is divided into multiple stages, say EX1 EX2 ... EXn, then all values from
ID and bypass paths are needed when EX1 starts, and values reach ME in the cycle after EXn. Our familiar
5-stage implementation is shown below for reference:

format

immed

IR

Addr

25:21

20:16

IF
 ID
 EX
 WB
ME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr

D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst

Decode

dest. reg

NPC

=

30
 2

2’b0

+

15:0

25:0

29:26

29:0

0
1

15:0

(a) Consider the 8-stage baseline implementation below (indicated by the stage labels). What is the execu-
tion rate of a friendly program (one written to maximize performance) on the implementation, in units of
instructions per second? The answer can be given as a formula of constants (as opposed to putting down
just x as an answer).
Baseline Implementation: IF1 IF2 ID1 EX1 EX2 ME1 ME2 WB1

�Execution rate in instructions per second.

If it takes 4.4 ns to pass through 8 stages then the clock frequency must be 8

4.4 ns
= 1.82GHz. So the execution rate is 1.82

billion insn per second.

7

(b) Call a program favorable for an implementation if it runs faster on the implementation than on the
baseline (repeated below). If it runs slower, call it unfavorable. For each implementation below write a two-
or three-instruction favorable program and a two- or three-instruction unfavorable program. Also provide a
concise but clear explanation of what it is about the program and implementation that makes it favorable or
unfavorable. If a program is favorable on one implementation and unfavorable on another write it once, but
provide an explanation for each. Hint: The three implementations differ in how they are affected by certain

dependencies.

Baseline Impl.: IF1 IF2 ID1 EX1 EX2 ME1 ME2 WB1

Implementation 1: IF1 IF2 IF3 ID1 EX1 ME1 ME2 WB1

�Favorable program. �Explanation.

�Unfavorable program. �Explanation.

In Implementation 1 there is one more IF stage than the baseline but one less EX stage. A favorable program would have a close
dependence from ALU output to ALU input. An unfavorable program would have a dependence from anywhere to the IF input,
which would be a control transfer, including a branch. From the pipeline diagram below for the unfavorable program one can see
that because of the extra IF stage the target is fetched one cycle later and so one more instruction is squashed than would be in the
baseline. Without a branch predictor these squashes would occur for every taken branch, with a branch predictor they would only
happen when the branch is mispredicted, but that’s still worse than the Baseline.

SOLUTION

Favorable for 1: Second instruction has true dep with first, both are ALU.

add r1, r2, r3

sub r4, r1, r5

Unfavorable for 1: Taken branch

beq r1, r2 TARG IF1 IF2 IF3 ID1 EX1 ME1 ME2 WB1

and IF1 IF2 IF3 ID1 EX1 ME1 ME2 WB1

or IF1 IF2x

sub IF1x

TARG:

xor IF1 IF2 IF3 ID1 EX1 ME1 ME2 WB1

Baseline Impl.: IF1 IF2 ID1 EX1 EX2 ME1 ME2 WB1

Implementation 2: IF1 ID1 EX1 EX2 EX3 ME1 ME2 WB1

�Favorable program. �Explanation.

�Unfavorable program. �Explanation.

Implementation 2 has one fewer IF stage, but one more EX stage. So the favorable program from the last part is unfavorable here,
and the unfavorable program from the last part is favorable here.

Baseline Impl.: IF1 IF2 ID1 EX1 EX2 ME1 ME2 WB1

Implementation 3: IF1 ID1 EX1 EX2 ME1 ME2 ME3 WB1

�Favorable program. �Explanation.

�Unfavorable program. �Explanation.

8

Implementation 3 also has one fewer IF than the baseline, but it has one more ME than the baseline. So the favorable program is the
same as the favorable program from the last part. The unfavorable program has a dependence through memory.

SOLUTION - Unfavorable Program

lw r1, 0(r2) IF1 ID1 EX1 EX2 ME1 ME2 ME3 WB1

add r3, r1, r4 IF1 ID1 --------------> EX1 EX2 ME1 ME2 ME3 WB1

9

Problem 4: (14 pts) Answer the following branch predictor questions.

(a) Code producing the branch patterns shown below is to run on three systems, each with a different branch
predictor. All systems use a 214-entry BHT. One system uses a bimodal predictor, one system uses a local
predictor with a 16-outcome local history, and one system uses a global predictor with a 16-outcome global
history.
0x1000: B1: T N T T N T T T N T N T T N T T T N ...

0x1010: B2: T T N T T N ...

0x1020: B3: T T ...

For the questions below accuracy is after warmup.

�What is the accuracy of the bimodal predictor on B1?

The accuracy is 6

9
.

�What is the accuracy of the local predictor on branch B1?

The branch B1 pattern has a length of 9, which easily fits in the 16-outcome local history, and so the accuracy is 100% .

�What is the warmup time of the local predictor on branch B1?

The branch must first be seen 16 times to warm up the local history, then it must be seen 2 × 9 times to warm up each of the 9

entries that it uses. The warmup time is 16 + 2 × 9 executions .

�What is the minimum local history size needed for a local predictor to predict B1 with 100% accuracy?

Five outcomes.

If it were four outcomes the local history TTNT would occur before both a taken and not-taken outcome.

�What is the accuracy of a global predictor with a three-outcome global history on branch B2 (not B1)?

Two global histories are possible: TTN and NTN. the NTN global history is always followed by a taken outcome. The TTN global
history can be followed by both a taken and a not taken outcome. The patterns occur in the following repeating sequence TTN.N,

TTN.T, NTN.T, TTN.N, TTN.T, NTN.T,. . .. Assuming one of the two TTN patterns mispredicts the accuracy would be 2

3
. It

is also possible that both TTN occurrences mispredicts, in that case the accuracy would be 1

3
.

�What is the minimum global history size needed for a global predictor to predict B2 (not B1) with 100%
accuracy?

Five outcomes.

10

Problem 4, continued:

(b) Consider code producing the patterns below running on two systems, one using a global predictor and
the other using a gshare predictor. Both systems use a 216-entry BHT and a 12-outcome global history. The
hexadecimal numbers indicate the address of the branch instruction. For example, B5: 0x1100 indicates
that the instruction we call B5 is at address 0x1100.

Pattern L: T T T ... N (A hundred iteration loop.)

B5: 0x1100: L L L L

B6: 0x1110: N N N N

B7: 0x1200: L L L L

B8: 0x1210: T T T T

�Why is the accuracy of the gshare predictor so much better than the global predictor on this example?

The difference is on branches B6 and B8. Branch B6 is highly biased not taken and B8 is highly biased taken, a bimodal predictor
could easily predict each of these branches accurately since it uses the branch address to find a two-bit counter. In contrast the global
predictor uses the global history for an address in the PHT to retrieve a two-bit counter. The global history for both branches will
be TTTTTTTTTTTN, because branches B5 and B7 have the same long pattern. Therefore branches B6 and B8 will share an entry
and so be predicted inaccurately. The gshare predictor uses the global history exclusive-ored with the branch address as an address
in the PHT. Because the PC is used branches B6 and B8 will use different entries and so be predicted accurately.

�What is the minimum number of BHT entries for which the gshare predictor will outperform global on
this code? Hint: Look at the branch addresses.

The minimum number is 27 entries. If there are any fewer than address B7 and B6 will map to the same entry because the lower
6 + 2 = 8 bits of their addresses are identical. (The +2 is needed because the two least significant bits, which are always zero, are
not used in computing the PHT address.)

11

Problem 5: (15 pts) The diagram below is for a 4-way set-associative cache with a capacity of 8 MiB (223

bytes). The system has the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=
Tag

Valid

Data

 Addr

Tag

 Addr

=
Tag

Valid

Hit

Out

Out

Out

64 b

128 b

63:21

20:4

63:2120:8

20:8

20:4

�Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

63 21

Index

20 8

Offset

7 4 3 0

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity, 223 characters, plus 4 × 221−8 (64 − 21 + 1) bits.

�Line Size (Indicate Unit!!):

Line size is 28 = 256 characters.

�Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

63 23

Index

22 8

Offset

7 4 3 0

12

Problem 5, continued: The problems on this page are not based on the cache from the previous page.
The code fragments below run on a 32MiB (225 byte) direct-mapped cache with a 64-byte line size. Each
code fragment starts with the cache empty; consider only accesses to the array, a.

(b) Find the hit ratio executing the code below.

�What is the hit ratio running the code below? Explain

float sum = 0.0;

float *a = 0x2000000; // sizeof(float) == 4

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[i];

The line size of 26 characters is given, the size of an array element is 4 = 22 characters, and so there are 26−2 = 24 elements per
line. The first access, at i=0, will miss but bring in a line with 24 elements, the next 24

− 1 accesses will be to data on the line,
but sixteenth access after the miss will miss again. Therefore the hit ratio is 15

16
.

(c) Find the smallest value of STRIDE for which the cache hit ratio in the program below will be zero.

�Fill in smallest value for STRIDE for which hit ratio 0.

�Briefly explain.

The value of STRIDE should be chosen so that the index of a[i] and a[i+STRIDE] are the same (but of course their tags will
be different). We want the difference in addresses to be 225. Since an array element is 4 bytes that means that STRIDE must be
2
25

4
= 223.

float sum = 0.0;

float *a = 0x2000000; // sizeof(float) == 4

int i;

int ILIMIT = 1 << 11; // = 211

int STRIDE = 1 << 23; // <-- FILL IN. SOLUTION FILLED IN.

for (i=0; i<ILIMIT; i++) sum += a[i] + a[i + STRIDE];

13

Problem 6: (15 pts) Answer each question below.

(a) What is the difference between instruction-level parallelism (ILP) and explicit parallelism?

� ILP and explicit parallelism difference.

Short answer, sufficient to get full credit: ILP is a property of machine language code that is written for a serial system, it is a
measure of how many instructions can execute at the same time. Explicit parallelism is something specified by a programmer or
compiler.

More detailed explanation: Explicit parallelism is something specified by the programmer, perhaps using a special language or more
often an API such as pthreads, OpenMP, or MPI to specify how parts of the program should execute in parallel. Explicit parallelism
might also be specified by a parallelizing compiler. In contrast, instruction level parallelism is something that is present in serial
(non-parallel) programs at the machine-language level. It is a measure of how many instructions can execute at the same time.
Programs with lots of ILP execute well on superscalar processors.

(b) A company has a large customer base for its ISA Y products, the most advanced of which is a 4-
way superscalar dynamically scheduled implementation. The company is considering three possible next-
generation systems: Develop an 8-way superscalar dynamically implementation of ISA Y , develop a chip
with 16 scalar implementations of ISA Y , or develop a VLIW ISA and implementation. For each strategy
indicate how much effort it will take for customers to use the new system.

�Customer effort to use 8-way superscalar dynamically scheduled system. Explain.

The company’s current product is a 4-way superscalar chip. Code should run on the 8-way chip without any modification and so the
customer effort (in preparing the code) is zero.

�Customer effort to use chip with 16 scalar implementations. Explain.

Presumably the company’s customers have not parallelized their code. Since the chip has sixteen separate processors customers will
have to parallelize their code, otherwise the code will just run on one core and so run slowly (since its scalar). Parallelizing code is
hard, and so customer effort is high.

�Customer effort to use VLIW implementation.

The term VLIW refers to a style of ISA. To use the new chip customers will have to re-compile their code. That will require moderate
to low effort.

(c) Consider the three systems from the previous part. For each system indicate an advantage over the
others. The advantage should specify an assumed workload, an answer might start “The advantage, those
customers that run programs that are , is

�Advantage of 8-way superscalar dynamically scheduled system.

It can run existing code without modification. Dynamic scheduling is well suited to typical “integer” workload, with its many medium
difficulty branches and irregular data access patterns.

�Advantage of 16 scalar system chip.

Because the processors are simple, many can fit on a chip. Workload that can be efficiently parallelized will run fastest on this system.

�Advantage of VLIW implementation.

The intended advantage of VLIW is simpler implementations compared to superscalar techniques. So far this has only achieved success
in DSP (digital signal processing) chips. So lets assume the workload consists of DSP programs.

14

Problem 7: (18 pts) Answer each question below.

(a) Why might a 1% change in branch prediction accuracy have a larger impact on the performance of a
4-way superscalar processor than on a 2-way superscalar system?

�Larger impact on 4-way over 2-way because...

Because the 4-way system will fetch twice as many instructions per cycle. Since the time to resolve the branch will likely be the same
on the two systems, the 4-way system will waste more of its execution potential. For example, suppose that the 4-way system takes
10 seconds to execute a program and the 2-way system takes 15 seconds. Suppose that the time to resolve mispredicted branches on
both systems (in total) is 3 seconds. That 3 seconds is a bigger percentage of 10 than 15, so the 1% improvement will have a bigger
impact on the 4-way system.

(b) Dynamically scheduled systems use a technique called register renaming in which an instruction’s archi-
tected registers are renamed into physical ones. Provide a brief example illustrating why register renaming
is necessary.

�Example illustrating need for register renaming and explanation.

Example for solution.

mul.s f0, f1, f2 IF ID Q RR M1 M2 M3 M4 M5 M6 WB C

add.s f3, f0, f5 IF ID Q RR A1 A2 ..

lwc1 f0, 0(r1) IF ID Q EA ME WB

sub.s f6, f0, f7 IF ID Q RR A1 A2

In the example above the lw writes back before the mul. Without register renaming the value in the f0 register would be wrong after
the mul.s writes back. Any later instruction would get the mul.s result, not the lwc1 result which is correct.

15

(c) The SPECcpu rules require that the compilers used to prepare a run of the suite be real products that
the company (or some other company) makes an honest effort to sell (or give away). Explain how the
SPECcpu scores might be inflated if the compilers could be products in a technical sense, but not something
the company is trying to put in customer hands.

�Scores inflated by unmarketed compilers because...

The compilers might include buggy optimizations which work for the SPECcpu benchmarks, because those specific problems have
been fixed, but would still be buggy for other code. Actual users would be reluctant to use a buggy compiler, even if avoiding the
bugs would yield a performance benefit.

� If the compilers produce faster programs, why not promote them?

Based on the answer above, because that would alienate customers.

(d) What is the difference between a trap and an exception?

�Difference between trap and exception.

A trap is an instruction which is intended to start a handler. It’s usually used to implement the interface to an operating system,
among other purposes. The programmer might insert a trap instruction to request that the operating system, say, open a file. An
exception is the response of the system to something going wrong with an instruction, for example, a bad opcode or memory address.
As with a trap the handler is called, but unlike a trap an exception can happen to most any instruction.

16

