
021 021Components of CPU Performance and Performance Equation

Why is my computer fast (or slow)?

Would it help to improve ?

CPU performance equation is one way to start answering these questions.

021 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 021

022 022

CPU Performance Decomposed into Three Components:

• Clock Frequency (φ)

Determined by technology and influenced by organization.

• Clocks per Instruction (CPI)

Determined by ISA, microarchitecture, compiler, and program.

• Instruction Count (IC)

Determined by program, compiler, and ISA.

These combined to form CPU Performance Equation

tT =
1

φ
× CPI × IC

,

where tT denotes the execution time.

022 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 022

023 023

CPU Performance: Simple System

Execution in program order . . .

. . . one at a time.

Instr. 1 Instr. 2 Instr. 3

Time/cycles:

Time/mms:

0 1 2 3 4 5 6 7 8 9 10 11

0 80 160

Instr. 500,000

1,999,996

39,999,920

IC = 500, 000; φ = 50 kHz; CPI = 4.

Execution time: IC × CPI. × clock period.

Here (and only here) CPI is number of cycles for each instruction.

023 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 023

024 024Execution: Pipelined, In Order

To Run Faster: Overlap Instructions (Pipelined Execution)

Result must be same as one-at-a-time execution . . .

. . . not too difficult to achieve.

Instr. 1

Instr. 2

Instr. 3

Time/cycles:

Time/mms:

0 1 2 3 4 5 6 7 8 9 10 11

0 20 40

Instr. 500,000

750,000

3,750,000

Instr. 4

Instr. 5

Instr. 6

Instr. 7

IC = 500, 000; φ = 200 kHz; CPI = 750000

500000
= 1.5.

Execution time at best: IC × clock period . . .

. . . assuming 1 cycle to start each instruction and . . .

. . . instruction can start each cycle. (Slower in illustration.)

024 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 024

025 025Execution: Pipelined, Ideal Out of Order

To Run Even Faster: Overlap Instructions and Start Out of Order

Sometimes skip an instruction and execute it later.

Instr. 1

Instr. 2

Instr. 3

Time/cycles:

Time/mms:

0 1 2 3 4 5 6 7 8 9 10 11

0 4 8

Instr. 500,000

500,000

500,000

Instr. 4

Instr. 5

Instr. 6

Instr. 7

Instr. 8

Instr. 9

IC = 500, 000; φ = 200 kHz; CPI = 1.

Execution time at best: IC × clock period . . .

. . . assuming 1 cycle to start each instruction . . .

. . . instruction can start each cycle.

025 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 025

026 026Execution: Pipelined, Ideal Out of Order, Superscalar

To Run Fastest1: Overlap, Out-of-Order, Start n per Tick (n-Way Superscalar).

Requires about n times as much hardware. (Below, n = 2.)

Instr. 1

Instr. 2

Instr. 3

Time/cycles:

Time/mms:

0 1 2 3 4 5 6 7 8 9 10 11

0 .008 .016

Instr. 500,000

250,000

500

Instr. 4

Instr. 5

Instr. 6

Instr. 7

Instr. 8

Instr. 9

Instr. 12

Instr. 14

Instr. 15

Instr. 13

Instr. 10

Instr. 16

Instr. 11

Instr. 17

Instr. 18

IC = 500, 000; φ = 500 MHz; CPI = 1

2
.

Execution time at best: 1

n
× IC × clock period . . .

. . . assuming 1 cycle to start each instruction instruction can start each cycle.

1 Using a conventional serial instruction set architecture.

026 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 026

027 027Execution: Pipelined, Out of Order, Superscalar

Data from a real program, perl. CPI is 0.44.

Processor can start four instructions per cycle.

Colors show the steps in processing an instruction, yellow is execution.

Grid 20 insn X 5 cycTime 42,084,435

S_regmatch+104
0x001610d8 stw %o4, [%l0 + 16]
0x001610dc cmp %o1, 2
0x001610e0 bne +3i {S_regmatch+109}
0x001610e4 lduw [%l0 + 24], %l6
0x001610ec mov %o0, %i5
0x001610f0 mov %i1 , %l3
0x001610f4 cmp %i1, 0
0x001610f8 be -100i {S_regmatch+12}
0x001610fc sethi %hi(0x1f0800), %g2
0x00161100 lduh [%l3 + 2], %g2
0x00161104 ldub [%l3 + 1], %o0
0x00161108 sll %g2 , 2, %g2
0x0016110c add %l3 , %g2 , %i1
0x00161110 cmp %i1 , %l3
0x00161114 bne +3i {S_regmatch+122}
0x00161118 mov %o0, %l0
0x00161120 cmp %o0, 77
0x00161124 bgu +3509i {S_regmatch+3632}
0x00161128 sethi %hi(0x219c00), %g2
0x0016112c sethi %hi(0x160c00), %g1
0x00161130 sll %o0, 2, %g3
0x00161134 add %g1, 512, %g2 {0x160e00}
0x00161138 lduw [%g3 + %g2], %g3
0x0016113c jmp %g3 + %g2

027 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 027

028 028Component of CPU Performance: Instruction Count

Given a program there are two ways instructions could be tallied:

Static Instruction Count:

The number of instructions making up the program.

Dynamic Instruction Count (IC):

The number of instructions executed in a run of the program.

For estimating performance, dynamic instruction count is used.

028 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 028

029 029Instruction Counts

Example, assembler program that computes a =
∑

9

i=0
i.

Written in Simplescalar assembler.

IC

1 move r5, r0 ! r0 is always zero.

1 move r3, r0

L23: ! Branch label.

10 addu r5, r5, r3 ! Add unsigned.

10 addu r3, r3, 1

10 slt r2, r3, 10 ! r2 = r3 < 10

10 bne r2, r0, L23 ! Branch to L23 if r2 not equal 0.

Static count: 6 (number of instructions).

Dynamic count: 42.

029 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 029

0210 0210Component of CPU Performance: Clock Frequency

CPUs implemented using synchronous clocked logic.

Typical Clock Cycle

• When clock switches from low to high work starts.

• While clock is high work proceeds.

• When clock goes from high to low work should be complete.

Clock frequency determined by critical path.

Critical Path:

Logic doing most time consuming work (in a cycle).

If clock frequency is too high work will not be completed . . .

. . . and so system will not perform properly.

For high clock frequencies, keep critical paths short.

0210 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0210

0211 0211Component of CPU Performance: CPI

Cycles (clocks) per Instruction (CPI)

Oversimplified definition: CPI:

Average number of cycles needed to execute an instruction.

Better definition: CPI:

Number of cycles to execute some code divided by number of instructions. This is approxi-
mately the average number of cycles between instruction initiations (instruction starts).

Difference between simple and better definition:

Interested in rate at which instructions executed in program . . .

. . . not time time for any one instruction.

0211 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0211

0212 0212Review of CPU Performance Equation

tT =
1

φ
× CPI × IC

,

where tT denotes the execution time.

• Clock Frequency (φ)

Determined by technology and influenced by organization.

• Clocks per Instruction (CPI)

Determined by organization and instruction mix.

• Instruction Count (IC)

Determined by program and ISA.

0212 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0212

0213 0213Interaction of Execution Time Components

Tradeoffs between Clock Frequency, CPI, and Instruction Count

Increasing Clock Frequency . . .

. . . reduces the work that can be done in a clock cycle . . .

. . . and possibly limiting instruction overlap, therefore increasing CPI.

Reducing IC (by adding “powerful” instructions to ISA) . . .

. . . may force implementors to increase CPI or lower clock frequency.

Balancing these is an important skill in computer design.

Since the ISA is usually fixed, IC is less of a factor.

0213 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0213

0214 0214IC v. CPI Tradeoffs

Assumption

IC is based on output of a good compiler.

Compiler is tuned for a particular implementation.

Two Cases

1. Same ISA, different implementation.

2. Different ISA, (and of course) different implementation.

0214 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0214

0215 0215IC v. CPI Tradeoffs, continued.

Case 1: Same ISA, different implementation.

Newer implementation may have lower CPI on existing code . . .

. . . but even better performance attainable by recompiling . . .

. . . which may increase CPI.

Compiler writer selects instructions based on performance of implementation.

0215 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0215

0216 0216

Consider two implementations:

Implementation A: add CPI impact 1 cycle, mul CPI impact 5 cycles.

Implementation B: add CPI impact 1 cycle, mul CPI impact 2 cycles.

! Call original value of r1, x. Code computes 6x.

! Code For Implementation A

add r1, r1, r1 ! r1 = 2x

add r2, r1, r1 ! r2 = 4x

add r1, r1, r2 ! r1 = 6x

! Code For Implementation B.

mul r1, r1, 6 ! r1 = 6x.

Implementation A: IC = 3, CPI = 1 (Computing CPI will be covered later.)

Implementation B: IC = 1, CPI = 2.

Implementation B is faster despite higher CPI.

Code compiled for B will run slowly on A.

0216 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0216

0217 0217IC v. CPI Tradeoffs, continued.

Case 2: Different ISA, (and of course) different implementation.

Major tradeoffs in complexity and speed.

Consider two implementations:

Implementation A: CPI impact: load, 2; add and store, 1.

Implementation B: CPI impact: add (doing load and store), 4.

! Code for implementation A.

load r1, [r2] ! Load r1 with data at address in r2.

add r3, r1, r4 ! r3 = r1 + r4

store [r2], r3 ! Store r3 at address in r2.

! Code for implementation B.

add [r2], r4, [r2]

Execution time same.

Implementation A: IC = 3, CPI = 4

3
.

Implementation B: IC = 1, CPI = 4.

0217 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0217

0218 0218Technological Change

Golden Handcuffs:

The need to maintain compatibility in a successful product line.

Famously, Intel’s IA-32. (Popularly referred to as 80x86.)

The ISA is the handcuffs. . .

. . . and technological change brings the desire to move your arms.

0218 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0218

0219 0219

Technological Change and Computer Designer

Technology determines “raw materials” for designer.

Raw material: number of gates and their speed.

ISA lifetime can be decades.

Raw materials greatly change over this time.

So, design ISA for now and future.

0219 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0219

0220 0220

How technological advancement affects processor.

Logic Speed, Clock Rate

No changes to organization or ISA.

Number of Transistors Available for Logic

Changes to organization and possible changes to ISA.

Memory Size

Change ISA to use larger address space.

Can use ISA having larger instruction codings.

Memory Speed Compared to Processor Speed

Include more sophisticated caching in organization.

0220 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0220

0221 0221Benchmarks

Benchmark:

Program used to evaluate performance.

Uses

• Guide computer design.

• Guide purchasing decisions.

• Marketing tool.

Guiding Computer Design

Measure overall performance.

Determine characteristics of programs.

E.g., frequency of floating-point operations.

Determine effect of design options.

0221 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0221

0222 0222Choosing Benchmark Programs

Important: Choice of programs for evaluation.

Optimal but unrealistic:

The exact set of programs customer will run.

Problem: computers used for different applications.

Therefore, must model typical users’ workload.

0222 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0222

0223 0223

Options:

Real Programs:

Programs chosen using surveys, for example.

+ Measured performance improvements apply to customer.

– Large programs hard to run on simulator. (Before system built.)

Kernels:

Use part of program responsible for most execution time.

+ Easier to study.

– Not all program have small kernels.

Toy Benchmarks:

Program performs simplified version of common task.

+ Easier to study.

– May not be realistic.

0223 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0223

0224 0224

Synthetic Benchmarks:

Program “looks like” typical program, but does nothing useful.

+ Easier to study.

– May not be realistic.

Commonly Used Option

Overall performance: real programs

Test specific features: synthetic benchmarks.

0224 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0224

0225 0225Benchmark Suites

Benchmark Suite:

A named set of programs used to evaluate a system.

Typically:

• Developed and managed by a publication or non-profit organization.

E.g., Standard Performance Evaluation Corp., PC Magazine.

• Tests clearly delineated aspects of system.

E.g., CPU, graphics, I/O, application.

• Specifies a set of programs and inputs for those programs.

• Specifies reporting requirements for results.

0225 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0225

0226 0226

What Suites Might Measure

• Application Performance

E.g., productivity (office) applications, database programs.

Usually tests entire system.

• CPU and Memory Performance

Ignores effect of I/O.

• Graphics Performance

0226 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0226

0227 0227

Example, SPEC CPU2006 Suites

Respected measure of CPU performance.

Managed by Standard Performance Evaluation Corporation,. . .

. . .a non-profit organization funded by computer companies.

Measures CPU and memory performance on integer and FP code.

Uses common Unix programs such as perl, gcc, gzip.

Requires that results on each program be reported.

Programs compiled with publicly available compilers and libraries.

Programs compiled with and without expert tuning.

0227 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0227

0228 0228

SPEC CPU2006 Suites and Measures

Suite of integer programs run to determine:

• SPECint2006, execution time of tuned code.

• SPECint base2006, execution time of untuned code.

• SPECint rate2006, throughput of tuned code.

• SPECint rate base2006, throughput of untuned code.

Suite of floating programs run to determine:

• SPECfp2006, execution time of tuned code.

• SPECfp base2006, execution time of untuned code.

• SPECfp rate2006, throughput of tuned code.

• SPECfp rate rate2006, throughput of untuned code.

0228 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0228

0229 0229

Other Examples

(Fall 2001: This list is out of date.)

BAPCO Suites, measure productivity app. performance on Windows 95.

TPC, measure “transaction processing” system performance.

WinMARK, graphics performance.

0229 EE 4720 Lecture Transparency. Formatted 7:50, 26 March 2010 from lsli02. 0229

