
LSU EE 4720 Homework 1 Solution Due: 3 March 2010

Problem 1: Re-write each code fragment below so that it uses fewer instructions (but still does
the same thing). Note: In the original assignment the branch instruction was blt r1, r0 TARG.

Fragment 1

lw r1, 0(r2)

addi r2, r2, 4

lw r3, 0(r2)

addi r2, r2, 4

#

SOLUTION

lw r1, 0(r2)

lw r3, 4(r2)

addi r2, r2, 8

Fragment 2

sub r1, r2, r3

bne r1, r0 TARG

add r1, r5, r6

#

SOLUTION

bne r2, r3 TARG

add r1, r5, r6

Fragment 3

ori r1, r0, 0x1234

sll r1, r1, 16

ori r1, r1, 0x5678

#

SOLUTION

lui r1, 0x1234

ori r1, r1, 0x5678

1

http://www.ece.lsu.edu/ee4720/

Problem 2: The MIPS code below runs on the illustrated implementation. Assume that the
number of iterations is very large.

format

immed

IR

Addr

25:21

20:16

IF
 ID
 EX
 WB
ME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr

D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst

Decode

dest. reg

NPC

=

30
 2

2’b0

+

15:0

25:0

29:26

29:0

0
1

15:0

LOOP:

lw r3, 0(r1)

addi r2, r2, 1

beq r3, r4 LOOP

lw r1, 4(r1)

(a) Show a pipeline execution diagram with enough iterations to determine the CPI.
Diagram shown below. To determine the CPI we need a repeating pattern of iterations. An iteration begins when

the first instruction of the loop is in IF, the first, second, and third iterations begin in cycle 0, 5, and 11, respectively.
At the beginning of the first iteration only lw r3 is in the pipeline, at the beginning of the second iteration lw r3

is in IF, lw r1 is in ID, etc. (look at the stages directly above the IF in cycle 5). So the pipeline state is different at
the beginning of the first and second iterations. At the beginning of the third iteration, in cycle 11, the pipeline contents
(state) is the same as the beginning of the second. Therefore we expect the pattern to repeat and so can determine the
CPI using the second iteration.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r3, 0(r1) IF ID EX ME WB

addi r2, r2, 1 IF ID EX ME WB

beq r3, r4 LOOP IF ID -> EX ME WB

lw r1, 4(r1) IF -> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r3, 0(r1) IF ID -> EX ME WB

addi r2, r2, 1 IF -> ID EX ME WB

beq r3, r4 LOOP IF ID -> EX ME WB

lw r1, 4(r1) IF -> ID EX ME WB

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r3, 0(r1) IF ID -> EX ME WB

2

(b) Determine the CPI.
The number of cycles is 11− 5 = 6 (the difference between the start times of the second and third iterations), so

the CPI is 6

4
CPI. .

(c) Schedule (re-arrange) the code to remove as many stalls as possible.
There are two solutions below. The first removes one of the two stalls, the second code fragment removes both stalls.

The first code fragment loads exactly the same items as the original code, but the second one loads an extra 0(r1),
which can possibly result in loading an illegal memory address. Either solution would get full credit.

LOOP: # Solution 1, still has 1 stall.

lw r3, 0(r1)

lw r1, 4(r1)

beq r3, r4 LOOP

addi r2, r2, 1

Solution 2, no stalls, but risks bad addr on last iter.

lw r3, 0(r1)

bne r3, r4 DONE

nop

LOOP:

lw r1, 4(r1) IF ID EX ME WB

addi r2, r2, 1 IF ID EX ME WB

beq r3, r4 LOOP IF ID EX ME WB

lw r3, 0(r1) IF ID EX ME WB

DONE:

3

Problem 3: The MIPS implementation from the previous problem has three multiplexors in the
EX stage.

(a) Write a program that executes without stalls and which uses the eight ALU multiplexer inputs
in order (perhaps starting at cycle 3) in consecutive cycles. That is, in cycle 3 the top input of the
upper ALU mux would be used, (bypass from memory), in cycle 4 the second one would be used
(NPC), in cycle 5 rsv, in cycle 6 bypass from WB, in cycle 7 we switch to the lower ALU mux with
the bypass from ME input, in cycle 8 rtv, etc.

Solution shown below. Note that the jal instruction writes register r31.

Bypass Upper-Mux-- Lower-Mux--

Bypass ME NP RS WB ME RT IM WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

add r1, r2, r3 IF ID EX ME WB

add r4, r1, r5 IF ID EX ME WB

jal IF ID EX ME WB

add r6, r7, r4 IF ID EX ME WB

add r1, r31, r8 IF ID EX ME WB

add r10, r11, r1 IF ID EX ME WB

add r12, r13, r14 IF ID EX ME WB

addi r15, r16, 123 IF ID EX ME WB

add r17, r18, r12 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

Bypass ME NP RS WB ME RT IM WB

Bypass Upper-Mux-- Lower-Mux--

(b) Explain why it would be impossible to use the EX-stage rtv mux inputs in order in consecutive
cycles.

The middle rtv mux input is the bypass from the memory stage. For that input to be used the immediately preceding
instruction would have to write a register, which stores don’t do. Therefore it is impossible. If they didn’t have to be in
order (but still consecutive) then it would be easy, see the code below.

Code using all the RTV inputs in consecutive cycles but not in order.

Bypass RT ME WB <- Mux inputs, in order.

Bypass ME WB RT <- Mux inputs, but not in order.

Cycle 0 1 2 3 4 5 6 7

add r1, r3, r4 IF ID EX ME WB

sw r1, 0(r2) IF ID EX ME WB

sw r1, 4(r2) IF ID EX ME WB

sw r1, 8(r2) IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7

4

