[SUEE 2720

Homework 1 solution

Due: 3 March 2010

Problem 1: Re-write each code fragment below so that it uses fewer instructions (but still does
the same thing). Note: In the original assignment the branch instruction was blt rl, rO TARG.

Fragment 1
lw rl1, 0(r2)
addi r2, r2, 4
lw r3, 0(r2)
addi r2, r2, 4

#

SOLUTION

1w r1, 0(r2)
1w r3, 4(r2)
addi r2, r2, 8

Fragment 2

sub rl, r2, r3
bne rl, rO TARG
add r1, r5, r6

#

SOLUTION

bne r2, r3 TARG
add r1, r5, r6

Fragment 3

ori rl, r0O, 0x1234
sll ri1, r1, 16

ori rl, rl, 0x5678

#

SOLUTION

lui r1, 0x1234

ori rl, r1, 0x5678

http://www.ece.lsu.edu/ee4720/

Problem 2: The MIPS code below runs on the illustrated implementation. Assume that the
number of iterations is very large.

129:26

D [(& EX ME WB

IEPCW ALU
25:21 —
Addr Data [rsv | Mem
20:16 .
Addr Data | riv o ALUE | Port
I H Addr
(A9 pin Nk | |Data Data HMD,
El] rv In Out 0
15:0| Format
. IMM
Nomed/
Addr
Mem (" Decode)
dst dst dst
dest. re
Port Data| | R k_gj

LOOP:
lw r3, 0(rl)
addi r2, r2, 1
beq r3, r4 LOOP
1w r1, 4(r1)

(a) Show a pipeline execution diagram with enough iterations to determine the CPI.

D'\agr&m shown below. To datermine the CP1 we need & prQ&Uﬂg pmem of iterations. An iteration beg’ms when
the first instruction of the \OOP is in IF, the Tirst, second, and third iterations ng‘\n in QyQ\Q 0, 5, and 11, TQSPQQU\/QW.
At the bgg'mn'mg of the first iteration omy lw r3isin the p'\p@\m@, at the b@gmmng of the second iteration 1w r3
isin1F, 1w r1isin ID, ete. (\OOK at the St&gQS G‘YQQUy above the IF in QyQ\Q 5). S0 the P\PQH\'\Q state is different at
the b@g'mmng of the first and second iterations. At the begmmng of the third iteration, in QyQ\Q 11, the p’\p@\'\ne contents
(SIMQ) is the sama as the ng’\nn‘mg of the second. Therefore we QXpQQI the pﬁlﬁ@m 10 YQp@M and so can determine the
CP1 US\\'\% The second iteration.

LOOP: # Cycle 01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
1w r3, 0(r1) IF ID EX ME WB
addi r2, r2, 1 IF ID EX ME WB
beq r3, r4 LOOP IF ID -> EX ME WB
1w r1, 4(r1) IF -> ID EX ME WB
LOOP: # Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1w r3, 0(r1) IF ID -> EX ME WB
addi r2, r2, 1 IF -> ID EX ME WB
beq r3, r4 LOOP IF ID -> EX ME WB
1w rl, 4(r1l) IF -> ID EX ME WB
LOOP: # Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1w r3, 0(rl) IF ID -> EX ME WB

(b) Determine the CPI.
The number of QyQ\QS is11—-5=6 (U\Q difterence between the start times of the second and third '\‘CQT‘AUOT\S), 80

the [CPlis & CPL |

(¢) Schedule (re-arrange) the code to remove as many stalls as possible.

Thaere are two solutions below. Thae Tirst removes one of the two stallg, the second code fragment removes both stalls.
The Tirst code Tragment 10ads exactly the same items as the Oﬂgm&\ code, but the second one loads an extra 0(r1),
which can pOSS-\b\y result in \Oﬁdmg an '\\\Qg&\ memory address. Either solution would g@t full eredit.

LOOP: # Solution 1, still has 1 stall.
lw r3, 0(r1)

1w rl, 4(rl)

beq r3, r4 LOOP

addi r2, r2, 1

Solution 2, no stalls, but risks bad addr on last iter.
lw r3, 0(r1)
bne r3, r4 DONE

nop
LOOP:

lw r1, 4(r1) IF ID EX ME WB

addi r2, r2, 1 IF ID EX ME WB

beq r3, r4 LOOP IF ID EX ME WB

1w r3, 0(rl) IF ID EX ME WB
DONE:

Problem 3: The MIPS implementation from the previous problem has three multiplexors in the
EX stage.

(a) Write a program that executes without stalls and which uses the eight ALU multiplexer inputs
in order (perhaps starting at cycle 3) in consecutive cycles. That is, in cycle 3 the top input of the
upper ALU mux would be used, (bypass from memory), in cycle 4 the second one would be used
(NPC), in cycle 5 rsv, in cycle 6 bypass from WB, in cycle 7 we switch to the lower ALU mux with
the bypass from ME input, in cycle 8 rtv, etc.

Solution shown below. Note that the jal instruction writes YQg\S'EQ\" r31.

Bypass Upper—-Mux—-- Lower-Mux--

Bypass ME NP RS WB ME RT IM WB

Cycle 01 2 3 4 5 6 7 8 9 10 11 12
add r1, r2, r3 IF ID EX ME WB

add r4, rl, rb IF ID EX ME WB

jal IF ID EX ME WB

add r6, r7, r4 IF ID EX ME WB

add r1, r31, r8 IF ID EX ME WB

add ri10, ri1, ri1 IF ID EX ME WB

add ri12, ri3, ri4 IF ID EX ME WB

addi ri15, ri16, 123 IF ID EX ME WB
add ri17, ri8, ri2 IF ID EX ME WB
Cycle 01 2 3 4 5 6 7 8 9 10 11 12
Bypass ME NP RS WB ME RT IM WB

Bypass Upper-Mux-- Lower-Mux-—-

(b) Explain why it would be impossible to use the EX-stage rtv mux inputs in order in consecutive
cycles.

The middle rey mux '\nput is the bypﬁSS from the memory Sulg@. For that 'mput 10 be used the '\mmo.d'\s;t@\y PTQQQG\T\g
instruction would have 1o write a \"Qg'\SIQY, which stores don't do. Therefore it is '\mposs'\b\e. 1\ U\Qy didn't have to be in
order (bUt still QOT\SQQUU\/Q) then it would be Qasy, see the code below.

Code using all the RTV inputs in consecutive cycles but not in order.

Bypass RT ME WB <- Mux inputs, in order.

Bypass ME WB RT <- Mux inputs, but not in order.
Cycle 01 2 3 4 5 6 7

add r1, r3, r4 IF ID EX ME WB

sw rl, 0(r2) IF ID EX ME WB

sw rl, 4(r2) IF ID EX ME WB

sw rl, 8(r2) IF ID EX ME WB

Cycle 01 2 3 4 5 6 7

