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Problem 1: (15 pts) The statically scheduled MIPS implementation including the floating-point pipeline
is illustrated below.
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(a) Consider the instruction mtc1 f2, r4. On the diagram above show the path taken by the data on its
trip from r4 to f2.

�Show path taken by value using a squiggly line on the diagram above.

The path is highlighted in red with dashes instead of squiggles. Note that mtc1 uses the rt field for the integer register. The ALU
will set its output to the value at its lower input.

(b) The control logic for the FP pipeline needs only a small change to handle mtc1. Make that change above.
(This has nothing to do with the bypass problem below.)

�Control logic for mtc1 in diagram above. (Ignore bypasses.)

Change appears in green. Both the lwc1 and mtc1 instructions take a value from the integer pipeline and write it to the FP register
file in the integer WB stage. So for detecting WF structural hazards the same logic can be used with the addition of a box for detecting
the mtc1 opcode.
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(c) Add the hardware needed to implement swc1. Add only datapath, not control logic.

�Datapath for swc1.

The added hardware will provide a way for a value read from the FP register file to hop over to the “Data In” connection on the
ME-stage memory port. The EX stage is the critical-path friendly place to do that, the change appears in blue.
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Problem 1, continued:

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

lui r1, 0x4593 IF ID EX ME WB

ori r1, r1, 0x819c IF ID EX ME WB

mtc1 f1, r1 IF ID EX ME WF

add.s f2, f2, f1 IF ID A1 A2 A3 A4 WF

mtc1 f4, r4 IF ID EX ME WF

sub.s f6, f4, f1 IF ID A1 A2 A3 A4 WF

swc1 f6, 0(r5) IF ID -------> EX ME WF

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

(d) The code fragment execution (pipeline diagram) above could not occur on the pipeline above because
certain bypass paths are needed.

�Add those bypass paths for the code above.

The bypass paths appear in blue in the diagram below.

�Show the cycle in which each added bypass path is used by the code above.

See the blue circles in the diagram below.

(e) Add control logic needed to detect the bypass used from mtc1 to sub.s. The logic should deliver a signal,
BYPASS, to the stage containing the bypass multiplexors. The BYPASS signal should be true if the bypass is
needed.

�Logic generating mtc1 to sub.s bypass signal.

Solution appears in red below; the green changes are from part (b). The dependence is detected by the = box, comparing the fs
source of the instruction in ID (register f4 of the sub.s, compared in cycle 6) to the destination of whatever instruction is two
stages from WF, that would be the mtc1 in the example (also during cycle 6). The comparison unit output is connected to an AND
gate which makes sure that there is an mtc1 two stages from WF. (Just checking we would tell us that something is two stages from
WF, but for our purposes we need to know whether it’s an mtc1 because that is the only instruction that can use the bypass path.)
The problem just asked for a signal named BYPASS, not that it be connected to anything, but the solution goes a bit further showing
that BYPASS is connected to the ID/EX latch. Connecting BYPASS directly to the added fsv multiplexor would be wrong.

Diagram on next page.
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Problem 2: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 214-entry BHT. One system uses a bimodal predictor,
one system uses a local predictor with a 16-outcome local history, and one system uses a global predictor
with a 16-outcome global history.

Branch B1 is random, and can be described by a Bernoulli random variable with p = .5. The outcome of
branch B3 will always be the same as the most recent outcome of branch B1. (That is, if an execution of B1
is taken, the next execution of B3 will be taken.) Branch B2 has a repeating pattern, it repeats twice below.

B1: r r r r r r r r

B2: T N T N N T N N N T T N T N N T N N N T

B3: R R R R R R R R

For the questions below accuracy is after warmup.

�What is the accuracy of the bimodal predictor on B2?

The 2-bit counter values are shown below. Note that the same counter value is present at the beginning and end, so the first occurrence

of the pattern can be used to compute the prediction ratio. That would be an unimpressive 4

10
= .4 (40%).

# SOLUTION Work

1 2 1 2 1 0 1 0 0 0 1 <-- Counter values

B2: T N T N N T N N N T T N T N N T N N N T

x x x x x x <-- Prediction outcome.

�What is the accuracy of the bimodal predictor on B3?

The branch is random and uncorrelated with itself so there is no way prediction accuracy can be anything other than .5 .

�What is the accuracy of the local predictor on B2?

The pattern length is ten outcomes, which can easily fit within the 16-outcome local history, and so the accuracy will be 1 .

�How small can the local history size be made without affecting the accuracy of branch B2? Explain.

The local history can be as small as 5 outcomes . A local history size of four would be too small, in that case local history pattern
NTNN could be followed by both a T or N outcome, precluding 100% accuracy. The table below shows all of the five-outcome patterns
that are possible (sorted and original order), followed by the outcome. We know that five are sufficient because each distinct history
is followed by only one possible outcome.

---Sorted----- -- Original Order--

Hist Outcome Hist Outcome

NNNTT N TNTNN T

NNTNN N NTNNT N

NNTTN T TNNTN N

NTNNN T NNTNN N

NTNNT N NTNNN T

NTTNT N TNNNT T

TNNNT T NNNTT N

TNNTN N NNTTN T

TNTNN T NTTNT N

TNTNN T TTNTN N

TTNTN N TNTNN T

�What is the accuracy of the local predictor on B3?
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The local predictor can only “see” B3 and so is just as helpless as the bimodal predictor, the accuracy will be .5 .

�What is the accuracy of the global predictor on B3?

Branch B3 is perfectly correlated with B1, and the global predictor can “see” B1, thanks to the generous 16-outcome global history

register. So after warmup accuracy will be 100% .

�How small can the global history size be made without affecting the accuracy of branch B3? Explain.

Five outcomes.

Five is the size needed to hold the r N N N T pattern, which has the longest separation between B1 and B2.

�How many PHT entries are used by B2 in the system using the local predictor?

Not counting warmup, ten entries . During warmup up to 15 additional patterns would be used for the first 15 times branch B2

was encountered. What those 15 patterns are is determined by the contents of the local history field in the BHT entry for B2 before
B2 was first executed. That local history field might contain the outcomes for some aliased branch, or else whatever values were set
when the power was turned on (random, or perhaps intentionally initialized to 0).

�What is the warmup time of the global predictor on branch B3?

There are four patterns of GHR value that will be present when predicting B3, for example, TRrNTRrNNTRrNNNT. The r and R in
this pattern can be T or N. If B1 and B3 were not correlated then the six arrs could have 26 = 64 possible values. But they are and
so the big R will always have the same outcome of the little r to its left. There are two such pairs in the pattern, and two unpaired
ars to the total number of instances of this pattern is 24 = 16. Now, assuming that there are 16 instances of each of the remaining
three patterns there would be a total of 64 possible GHR values and so 64 PHT entries would be used, each of which requires two
updates to warm up in the worst case. The warmup time would then be at least 128 executions of B3.
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Problem 3: (10 pts) Suppose that in a MIPS-I system using a bimodal predictor there were BHT collisions
on 5% of the predictions. (A BHT collision occurs when two branches use the same BHT entry.) A BHT
entry stores both a 2-bit counter and the branch’s 16-bit displacement. Grading Note: The contents of a

BHT entry was not in the original exam.

Consider a design alternative in which a tag were used to detect BHT collisions, in the same way a cache
uses a tag to detect hits (or misses).

(a) How large would the tag have to be to perfectly detect misses on a MIPS-I system using a 214-entry
BHT?

�Tag size needed, reason:

The BHT is indexed using the low bits of the branch PC, omitting alignment bits of course. That would be bits 15:2 in this case.

The higher bits, 31:16 would form the tag, and so that tag size would be 16 bits .

(b) Suppose that the storage budget for the BHT was fixed at the number of bits in a 214-entry BHT without
tags.

�About how many entries would there be in a BHT with tags?

Two solutions appear below. One is for a BHT entry that only stores a 2-bit counter. That was what the original question implied.
The second is for a BHT that stores the branch displacement.

Solution Ignoring Displacement: The existing BHT uses 214
× 2 = 215 bits. If the BHT held the tag, not just the two

bit counter, its capacity would be 2x
× 18 ≈= 2x+4 bits, where 2x is the number of BHT entries. Solving 2x+4 = 215 for

x yields x = 11, so the tagged BHT would have 2048 entries , one eighth its original size. The net result would be an increase
in collisions, but now at least we can detect those collisions. Note: That last sentence needs to be read with an air of

foolish confidence.

Solution Using Displacement: An existing BHT entry requires 18 bits, 16 for the displacement and 2 for the counter. Also
including the tag would nearly double the size. To keep the costs equal the number of entries in the tagged BHT would have to be

halved. Therefore, The tagged BHT would have 213 = 8192 entries.

(c) Based on the answer to the previous part, could we use a tagged BHT if the benefit of detecting collisions
were small, moderate, or large?

�Benefit needs to be small, medium, or large. Explain.

Solution Ignoring Displacement: With a factor of eight reduction in BHT size the benefit of detecting a collision needs to be
large. Extra large, maybe.

Solution Using Displacement: Since the BHT is half the size we would expect more collisions, exactly how much more is hard
to say. Therefore there would have to be at least a moderate benefit in doing so.

(d) What is the benefit of detecting BHT collisions on a four-way superscalar statically scheduled MIPS
implementation?

�Benefit for 4-way MIPS:

Solution Ignoring Displacement: Here we are assuming that a correct branch target is available despite the BHT collision.
There is no benefit at all because knowing that there is a collision does not help in making a prediction. It’s better to use an unreliable
prediction that might be right than to stall the pipeline until the branch resolves (thereby guaranteeing performance loss).

Solution Using Displacement: If there is a BHT collision then the branch displacement is likely wrong. Therefore, predicting
the branch taken is likely going to result in a target misprediction. Therefore, on a collision we should predict the branch not taken,
which might have just a .5 chance of being correct, but that’s better than predicting taken and having a nearly certain chance of
getting the target wrong.
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Problem 4: (15 pts) The diagram below is for a set-associative cache with a line size of 64 bytes and a
tag size of 11 bits. The system has the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

CPU
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Data
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Out
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 Addr
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Tag
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Data
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Tag


 Addr
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Tag


Valid


Hit


Out


Out


Out


32 b
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31:21

20:2

31:2120:6

20:6

20:2

�Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 21

Index

20 6

Offset

5 2 1 0

�Cache Capacity (Indicate Unit!!):

The cache capacity can be determined from the following pieces of information: the 11-bit tag (given explicitly in the first paragraph),
the 2-way associativity (by noting the diagram has 2 “ways”), and the 32-bit address space (from the number of address bits shown in
the diagram near the upper-left). From the 11-bit tag and 32-bit address space we know that the low tag bit is 32−11 = 21, and so

the capacity of a way is 221 bytes or 2MiB. Since the cache is 2-way the total capacity is 221
× 2 = 222 characters or 4MiB .

�Associativity:

Associativity is 2

by inspection of the diagram.

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity, 222 characters, plus 2 × 221−6 (32 − 21 + 1) bits.

�Show the bit categorization for a direct mapped cache with the same capacity and line size.
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Address:

Tag

31 22

Index

21 6

Offset

5 2 1 0
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Problem 4, continued:

(b) The code below runs on a 32MiB direct-mapped cache with a 256-byte line size. Initially the cache is
empty; consider only accesses to the array.

�What is the hit ratio running the code below? Explain

double sum = 0.0;

double *a = 0x2000000; // sizeof(double) == 8

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[ 4 * i ];

The line size of 28 characters is given, the size of an array element is 8 = 23 characters, and so there are 28−3 = 25 elements per
line. However, because the array index is multiplied by four only every fourth element is read, or 25/4 = 23 elements per line. The
first access, at i=0, will miss but bring in a line with 25 elements, the next 23

− 1 accesses will be to data on the line, but eighth
access after the miss will miss again. Therefore the hit ratio is 7

8
.
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Problem 5: (15 pts) Several possible new MIPS instructions appear below. Show how each instruction can
be encoded and show datapath changes needed to implement the instruction.

• The changes cannot break existing instructions.

• The changes can not have a large impact on clock frequency.

• A shift unit is present, but not shown.

Note: The original exam only asked for a summary of datapath changes, and did not mention the shift unit

or clock frequency.

Also indicate the relative difficulty of implementing the instruction. If an instruction is deemed moderate or
difficult indicate the most important reasons why.
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Continued on next page.
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(a) The sllii instruction is like an lui except it can shift the immediate by any amount. For example,
sllii r1, 0x1234,16 would be equivalent to an lui r1, 0x1234.

sllii r1, 0x1234, 6 ! r1 = 0x1234 << 6

�Show possible encoding (instruction format (R, I, etc) and field (rs, rt, etc) usage):

Because it has an immediate and register it would have to be format I. The rs field will be used to hold the shift amount, leaving
the role of the rt field unchanged.

Format I :

Opcode

sllii

31 26

rs

6

25 21

rt

1

20 16

immed

0x1234

15 0

�Easy, moderate, or difficult to implement:

�Show datapath changes.

This should be easy because there already is a shift unit (for the sll and friends). For the new instruction the “shiftee” input to the
shift unit will also have to connect to the ID/EX.IMM latch, and the shift amount input would have to connect to a new ID/EX.rs

latch (not to be confused with ID/EX.rsv).
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Problem 5, continued:
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(b) The adds (add scaled) can shift the second operand left by any amount.

adds r1, r2, r3, 4 ! r1 = r2 + ( r3 << 4 )

�Show possible encoding:

The encoding is easy, just put the shift amount in the sa field. In fact, there would be no reason to choose a new func field value
because add is ordinarily defined with an sa field value of 0.

Format R :

Opcode

0

31 26

rs

2

25 21

rt

3

20 16

rd

1

15 11

sa

4

10 6

func

5 0

�Easy, moderate, or difficult to implement:

�Show datapath changes.

This would be moderately difficult to implement because the shift needs to be performed before the ALU operation. Since arbitrary
shifts cannot be done quickly, a stage would have to be added between ID and EX.

14



(c) The addsid instruction produces a sum like add but one operand is obtained from memory.

addsid r1, r2, (r3) ! r1 = r2 + Mem[r3]

�Show possible encoding:

The encoding here is also easy. Make the memory address register rt.

Format R :

Opcode

0

31 26

rs

2

25 21

rt

3

20 16

rd

1

15 11

sa

0

10 6

func

addsid

5 0

�Easy, moderate, or difficult to implement:

�Show datapath changes.

This is difficult because the memory port is in the stage after the ALU. There are no reasonable ways to get the value read from
memory back to the ALU. Here are some unreasonable ways:

Add a new stage between ID and EX, and put a memory port there. This isn’t a good idea because memory ports are expensive.

Add a new stage, call it MS (memory source). Unlike the solution above, the MS stage will share a memory port with ME. This will
require a multiplexor on the memory port address input, as well as control logic to detect the structural hazard. Further, it will likely
strain critical path since it’s the memory port that is hardest to squeeze into one cycle.

Add a new stage, EX2, after ME, the new stage will have an ALU to do any operations that could not be done in EX. Besides the
cost, there will be bypass issues with this solution.
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Problem 6: (10 pts) Consider a single four-way superscalar implementation and a chip with four scalar
implementations (like our five-stage MIPS). Both are statically scheduled and have similar features.

�Why might the clock frequency of the superscalar system be lower than the scalar systems?

Bypass paths are the main culprit in several ways. First, physical distances are larger and so there will be higher propagation delays.
Bypass multiplexors will also have more inputs, 2n inputs each for an n-way superscalar. If control logic is placed in ID then that
should not have an impact on clock frequency for something as small as a 4-way system.

�Why might the chip area (or cost) of the four scalar systems be less than the superscalar system?

An n-way, 5-stage superscalar might have about 2n2 bypass paths, whereas n scalar systems would just have 2n paths. For that
reason the scalar systems would cost less. There might be some savings with the superscalar systems, such as fewer memory ports or
floating-point units.

�How does the average program run less efficiently on the superscalar system than on one of the scalar
systems? (Less efficiently means more stalls and squashes.)

There are only a few instruction pairs that can cause the scalar system to stall, such as a load followed by an instruction that
uses the loaded value. There are no stalls for consecutive dependent arithmetic instructions, and no stalls or squashes for taken
branches (assuming the needed bypasses are present). In contrast, dependent instructions in the same group (fetched together) on
the superscalar system will cause a stall. For that reason, execution will be less efficient.

�Given the answers above, why does a typical chip have two four-way superscalar implementations rather
than eight scalar implementations? (Please do not confuse eight scalar implementations with one eight-way

superscalar system.)

Lets consider the simpler tradeoff of one 4-way superscalar vs. four scalar processors. If a program could be perfectly parallelized
(achieve linear speedup) then it would execute faster with four scalar processors because their clock frequency would be higher and
because there would be fewer stalls. However, writing parallel code is often difficult, for some classes of programs very very difficult.
The 4-way superscalar is faster for the programs you already have. (Beyond 4-way efficiency drops sharply, which is why chips have
several 4-way cores.)
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Problem 7: (15 pts) Answer each question below.

(a) One use for exceptions is to implement rare or specialized instructions in software (called emulation).
One example is the SPARC quad-precision arithmetic instructions, such as faddq f4, f8, f12 (floating-point
add quad). No existing SPARC implementation can execute these instructions in hardware.

�Why would faddq have to raise a precise exception in order to be emulated?

The emulation code will reproduce what the faddq was supposed to do, meaning it will read the source registers, compute a 128-bit
floating-point sum, and write that sum to the destination registers. It will then resume execution at the instruction following faddq.
To do that the exception handler (which calls the emulation code) must be reached as though execution jumped to the handler just
before the faddq (the precise exception definition). If the exception were not precise then execution might have reached several
instructions after faddq, perhaps overwriting one of its source registers, making it impossible to emulate, and anyway making it
impossible to return to the instruction after faddq (which would then execute a second time).

(b) Consider an implementation similar to our pipelined MIPS in which a floating-point overflow on a fmuld

did not raise a precise exception (because the hardware to do so would not be worth the trouble).

�Does that mean it would not be possible for the faddq to raise the precise exception needed for emulation?
Explain.

No, because the faddq would raise an illegal instruction exception, which is detected early enough to be precise.
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(c) Answer the following questions about the SPECcpu benchmarks.

�Why are branches in the FP suite easier to predict than branches in the integer suite?

Because many programs in the FP suite perform scientific calculations, which typically operate on large sets of uniform data. Loops
have many iterations, making them easier to predict.

�Why is it important that the source code is available for the SPECcpu benchmarks?

SPECcpu is intended to measure the potential of new ISAs and new implementations. The tester compiles the source code for the
particular implementation being tested, presumably in such a way that brings out the tested system’s full potential. If source code
were not included the suite would have to provide pre-built executables. These could not be used to test new ISAs since SPEC
wouldn’t have the tools to build code for them (because they are new). New implementation might benefit from new compilers, which
SPEC could also not be expected to have.

(d) Answer each ISA question below:

�Describe a feature of VLIW ISAs that distinguishes them from RISC and CISC ISAs.

Instructions are handled in groups called bundles. A bundle includes several (usually 3) instructions plus a field (sometimes called a
template) providing dependency and other information.

�Describe a feature of CISC that distinguishes it from RISC.

Instructions can vary in length. Memory access is not restricted to load and store instructions. For example, an arithmetic instruction
can load operands from memory and write a result to memory.

18


