Problem 1: Solve Fall 2008 Final Exam Problem 4 and the additional questions below.
(a) For part (a) provide pipeline execution diagrams for the three systems (5-stage scalar, \(n\)-way superscalar, and \(5n\)-stage superpipelined) running code of your choosing. Refer to these diagrams when answering part (a).

Solution shown below. In the superscalar solution \(n\) instructions reside in a stage at one time, in the superpipelined system each stage is split into \(n\) stages and the clock frequency is increased by a factor of \(n\).

Scalar System
#
Cycle 1 2 3 4 5 6 ... n n+1 ...
1: add r1, r2, r3 IF ID EX ME WB
2: or r9, r2, r3 IF ID EX ME WB
... n: sub r4, r5, r6 IF ID EX ME WB
n+1: xor r6, r7, r8 IF ID EX ME WB
...

\(n\)-way Superscalar
#
Cycle 1 2 3 4 5 6 ... n n+1 ...
1: add r1, r2, r3 IF ID EX ME WB
2: or r9, r2, r3 IF ID EX ME WB
... n: sub r4, r5, r6 IF ID EX ME WB
n+1: xor r6, r7, r8 IF ID EX ME WB
...

Superspipelined
#
Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13
1: add r1, r2, r3 IF1 IF2 .. IFn ID1 ID2 .. IDn EX1 EX2 .. EXn ..
2: or r9, r2, r3 IF1 IF2 .. IFn ID1 ID2 .. IDn EX1 EX2 .. EXn ..
... n: sub r4, r5, r6 IF1 IF2 .. IFn ID1 ID2 .. IDn EX1 ..
n+1: xor r6, r7, r8 IF1 IF2 .. IFn ID1 ID2 .. IDn ..
...

Problem 2: Consider the three systems from Problem 4 in the final exam. The problem focused on potential (favorable) execution time, which can be achieved when there are few stalls, here we’ll be more realistic.
(a) Which system will suffer more stalls on typical code? Explain.

The dependence in the code below will not stall the scalar system, will always stall the superpipelined system (since \texttt{sub} needs a value in \texttt{EX1} at the latest, but the \texttt{add} doesn’t have it ready until \texttt{ME1}, \(n - 1\) cycles too late), and will sometimes stall the superscalar system. The non-stall superscalar case is shown below, note that the \texttt{add} is the last instruction of a group so the \texttt{sub} starts one cycle later. Therefore the superpipelined system suffers the most stalls.

1
(b) Invent a quantitative measure of implementation (not program) stall potential and apply it to the three systems. The answer should include a formula for each system (giving the stall potential); the superscalar and superpipelined formulas should be in terms of n. *Hint: think about the average or minimum distance between two dependent instructions needed to avoid a stall.* The formulas should be consistent with your answer to the first part.

Call the measure the *average stall distance*. Let $a \in \{0, \ldots, A-1\}$ be the set of possible instruction locations (the address divided by 4 in MIPS) and let $s(a)$ denote the minimum number of instructions between an add instruction at a and a dependent sub instruction (so that sub would be at location $a + 1 + s(a)$). For the scalar MIPS system $s(a) = 0$ for all a (there are no possible stalls between an add and a subtract). For the superscalar system

$$s(a) = \begin{cases}
0, & \text{if } a \mod n = n - 1; \\
1, & \text{otherwise}.
\end{cases}$$

and for the superpipelined system $s(a) = n$.

Define the *average stall distance* to be $\frac{1}{A} \sum_{a=0}^{A-1} s(a)$. The average stall distance for the scalar system is 0, for the superscalar system it is $\frac{n-1}{n}$ and for the superpipelined system it is n.

\[\text{n: } \text{add r1, r2, r3 } \text{IF } \text{ID EX ME WB} \]
\[\text{n+1: } \text{sub r4, r1, r5 } \text{IF } \text{ID EX ME WB} \]