LSUEE 4720 Homework 1 soution Due: 27 February 2009

Problem 1: Answer each question.

(a) Explain why the code below won’t finish running.

LOOP:
lw r1, 0(r2)
xor r3, r3, ril
bne r2, r4 LOOP
addi r2, r2, 2

The 1w effective address must be a mump\@, of four (U\@ address alignment Y@SU'\QU()T\) DUt it can't always be in the
code fragment above since r2 is incremented by 2 each iteration. The code won't Tinish because the 1w will raise some
kind of address misalignment exception at either the Tirst or second iteration.

(b) Shorten the code below.

lui r1, 0x1234
ori rl, ri1, 0x5678
lw r1,0(r1)

Solution
lui r1, 0x1234
lw r1,0x5678(r1)

(¢) Shorten the code below.

xor rl, r2, r3
beq rl, rO TARG
addi ri1, r4, 1

In the code above r1 will be zero only if r2 is equal to r3, 80 there is no need for the xor. Note: In the original
assignment the 1ast instruction did not modity r1, 80 one could not safely remove the xor.

Solution.
beq r2, r3 TARG
addi r1, r4, 1

http://www.ece.lsu.edu/ee4720/

Problem 2: Consider the execution code below on the illustrated implementation.

LOOP:
1w r2, 0(rd)
slt r1, r2, r3
beq r1l, rO LOOP
addi r4, r4, 4

l29:26

ID — (3 EX ME WB

I:PCW ALU
25:21 Addr Data [--{ rsv | Mem
2006} pdar Data | v =l ALU Port
,,: H Addr
A9 pin Tk | |Data Data HIMD,
:4l '* rtv In Out 01

15:0
immed

Addr
Mem (" Decode
dst st dst
dest. re
Port paial | rIL \dest. reg)
Out
E— E— E—

(a) Determine the execution rate in IPC (instructions per cycle) assuming a large number of itera-
tions. Use a pipeline execution diagram to justify your answer. (No credit without one.)

LOOP:

Solution

Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
lw r2, 0(rd) IF ID EX ME WB

slt rl1, r2, r3 IF ID -> EX ME WB

beq r1, rO LOOP IF -> ID ----> EX ME WB

addi r4, r4, 4 IF ----> ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
lw r2, 0(rd) IF ID EX ME WB

slt rl, r2, r3 IF ID -> EX ME WB

beq r1, rO LOOP IF -> ID ----> EX ME WB

addi r4, r4, 4 IF ----> ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
lw r2, 0(r4d) IF ID EX ME WB

The code suffers two stalls, the Tirst because the s1t needs the 1w value and the second (Q two-cyele SUA\\) Decause
the beq needs the s1t value. Iterations start (ﬂrst instruetion of the 100p 1s in IF) in cycles 0, 7, and 14. Since the
pipeline is in the same state in eycles 7 and 14 (lw in IF, addi in ID, and beq in EX) We can expect the iteration that

2

starts at 14 to be identical Lo the one that starts at 7. The time for these iterations is 14 — 7 = 7 cycles, and so the
axecution rate is % IPC(or if you prefer, the instruction initiation interval i % CPI).

(b) If the previous part was solved correctly there should be a stall due to the branch. Add a bypass
path to avoid the branch stall.

The added byp&SS path appears Dalow in blue. This byp&SS p&m aliminates the stall but would HKQ\y lowar the clock
fraquency. (See the next problem.)

l29:26
ID EX ME WB
lI:PCW ALU
25:21 —
> Addr Data |- rsv Mem
20:16 M
Addr Data |— rtv mil HJALU Port
,,: H Addr
A9 pin T | |Data Data HMD
— v |n__ou dly
15:0
immed
Addr
Mem (" Decode
dest. re dst st dst
Port paia \dest. reg /
L IR I
Out
E— E— E—
LOOP:
Solution - Execution with the bypass.
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
lw r2, 0(rd) IF ID EX ME WB
slt r1, r2, r3 IF ID -> EX ME WB
beq r1, r0 LOOP IF -> ID EX ME WB
addi r4, r4, 4 IF ID EX ME WB

(¢) Why might the added bypass path impact clock frequency?

The s1t at the ALU output would be YQ&Gy late in the QyQ\Q, and these signa\s would still have 1o pass U\T()Ugh the
ID-stage comparison unit, then some control logie, the IF-stage mux, finally reaching the PC input. Since it's reasonable
that the eritical path pElSSQ(l U\T()Ugh the ALU without this byp&SS, add'mg the byp&SS would increase the eritical path and
therefore reduce clock TYQQUQﬂQy. (A solution that D\jp&SSQd from ME to ID would not '\mp;m clock Tr@quo,ney ‘UH\QSS it
ware taken from the memory pOYI OUIPUIX but it would omy reduce the number of stall QyQ\QS from 2 1o 1.)

(d) Suppose the clock frequency of the original pipeline were 1 GHz, and call the clock frequency of
the added-bypass implementation ¢. For what value of ¢ will the run time of the code fragment be
the same on the original and added-bypass implementations (assuming a large number of iterations).

Without the bypass the code executes at 1 GHz IPS (instruction per second). With the bypass the code will

execute af a rate of 2 IPCor 2¢ IPS. Solving 21 GHz = 2¢ yields ¢ = 2 GHz,

(e) Suppose a blt (branch less than) instruction was available that could compare two registers
(not just a register to zero). Re-write the code above for this instruction and add bypasses that are
no worse than the added-bypass bypass. How would the performance of this blt implementation
on the re-written code fragment compare to the added-bypass implementation on the original code
fragment? Assume both systems have the same clock frequency.

The bypass needed Tor this part would be from ME 1o ID, Since one value o compare arrives at through memory
port. The execution rate of the original code on the byp&SSQd p'\pe\'mce i3 5 aycles per \OOP iteration. The code with b1t

Sl sutTers one stall and S0 executes at 4 cycles per iteration (SQQ diagram DQ\O\N). The net result is improved performance.

Note that the speedup (performance ratio) is 2 = 1.25 while the improvement in IPC is only % = 1.0667.

Solution: Code using blt

LOOP:

lw r2, 0(rd) IF ID EX ME WB

blt r2, r3 LOOP IF ID -> EX ME WB
addi r4, r4, 4 IF -> ID EX ME WB

	Problem 1
	Part char 97
	Part char 98
	Part char 99

	Problem 2
	Part char 97
	Part char 98
	Part char 99
	Part char 100
	Part char 101

