
Name

Computer Architecture

EE 4720

Final Examination

7 May 2009, 17:30–19:30 CDT

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: (20 pts) The MIPS implementation below, taken from the solution to last semester’s final,
includes hardware to implement an exception test instruction.

Several wires on the diagram are broken with heavy solid lines and marked with Fx and a value (mostly 0).
These indicate potential fault locations. If there is no fault the wire acts normally, if there is a fault the wire
is broken at the heavy line and the free half takes on the indicated value. For example, if fault Fa is present
the bottom input to the OR gate is always zero however the ID/EX.we signal on the other side is unaffected.

format

immed

IR

Addr

25:21

20:16

IF
 EX
 WB
MEM

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr

D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst

Decode

dest. reg

NPC

Int Reg File

FP Reg File

fd
fd

WF

Addr
 Data

D In
WE

Addr

Addr

Data

fsv

ftv

15:11

20:16
 M6

we
 we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3
A2
A1

M3
 M4
 M5

xw

fd

we

xw

fd

we

xw

M2

M

1

xw
 xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"

"2"

"1"

30
 2

"0"

+

15:0

29:0

0

1

2

is test

e

e

0

1

2

1’b0

t
 t

Changes to stall for test insn.

Logic to

suppress

WF if

exception

occurs

before test.

Fa

0

Fb

0

Fc
1

The problem here is to detect which fault, if any, is present by running test programs. One test program,
and a pipeline diagram, appears below. A handler has been set up that will set a goodException variable
to 1 if register and memory values are as expected, otherwise it is set to -1. The goodException variable is
initialized to 0 before each test.

2

Problem 1, continued:

Test 1: The mul should raise a precise exception.

Initial: f0 = 1; r1 = 20; Mem[r2] = 50; f2 * f4 = NaN

Cycle 0 1 2 3 4 5 6 7 8 9

Many nops.

mul.s f0, f2, f4 IF ID M1 M2 M3 M4 M5 M6x

test IF ID -------> EX MEx

sw r1,0(r2) IF -------> ID EXx

(a) When a test is run the exception handler is called (because the tests intentionally raise an exception).
A handler is shown below, written in C, but the handler does not set goodException correctly (not even
close). Modify the code so that goodException is set correctly based on the information provided by the
Test 1 code and comments. That is, goodException is set to -1 if the exception could not be precise.

int handler_fp(Regs *regs){

// Code below wrong, but shows how to read registers and memory.

if (regs->f10 == regs->f12 && is_nan(f14) && MemW(regs->r31) == 0x1234)

goodException = 1; else goodException = -1;

(b) Suppose Test 1 is run and goodException is set to -1 (it would be 1 in the no-fault case). Which of the
faults (Fa, Fb, or Fc) could have been responsible for the goodException value?

Faults that are definitely present. Explain.

Faults that could be present. Explain.

3

Problem 1, continued:

(c) Develop tests to determine for certain whether each of the faults is present. Test 1 and each of your tests
will be run, and based on the goodException values from each test one can say for certain which faults are
present.

Assume that at most one of the faults is present. Your tests should look similar to Test 1.

Tests (Code like Test 1)

Which combination of goodException values conclude Fa for certain.

Which combination of goodException values conclude Fb for certain.

Which combination of goodException values conclude Fc for certain.

4

Problem 2: (20 pts) Answer each question below. Be sure to check each code fragment carefully for

dependencies.

(a) The loop below runs on a statically scheduled 4-way superscalar MIPS implementation.

Show a pipeline execution diagram.

LOOP:

addi r2, r2, 8

lw r1, 0(r2)

add r3, r1, r4

bneq r2, r5 LOOP

sw r3, 4(r2)

Determine the IPC for a large number of iterations and assuming no cache misses.

Comment on the difference between the IPC and the potential IPC of the processor.

Schedule the code to improve execution time.

5

Problem 2, continued:

(b) The code below (same as the previous problem) executes on a 4-way superscalar dynamically scheduled
machine. Assume that branch prediction on this machine is perfect. Load instructions use the EA and ME

stages, branch instructions use the B stage, store instruction only use EA (they write memory when they
commit).

Though the machine is 4-way, assume an unlimited number of WB, EX, and RR stages.

Show a pipeline execution diagram for two iterations.

LOOP:

addi r2, r2, 8

lw r1, 0(r2)

add r3, r1, r4

bneq r2, r5 LOOP

sw r3, 4(r2)

Determine the IPC for a large number of iterations.

6

Problem 3: (20 pts) Code producing the branch patterns shown below is to run on three systems, each
with a different branch predictor. All systems use a 214-entry BHT. One system has a bimodal predictor,
one system uses a local history predictor with a 10-outcome local history, and one system uses a global
predictor with a 10-outcome global history.

The code has three branches, B1, B2, and B3. The outcome of B1 is random, described by a Bernoulli random
variable with p = .5 and is independent of everything. Branch B2 has a simple j-iteration loop pattern (j−1
T’s and an N) and branch B3 is a repeating pattern of k N’s followed by k T’s (see diagram below). Also
from the diagram notice that B1 occurs just before B2 but that a set of j B1 and B2s occur between each B3,
(similar to a branch in the homework and last semester’s final).

A A A

------------------ ------------------ ------------------ ...

B1: R R R ... R R R R ... R R R R ... R

B2: T T T ...T N T T T ...T N T T T ...T N

!<--- j --->!

B1&2: A A A A

B3: N N N ... N T T T ... T N N N ... N T...

!<--- k Ns --->! !<--- k Ts ---->! !<--- k Ns --->! ...

For the questions below accuracy is after warmup.

What is the accuracy of the bimodal on B1?

What is the accuracy of the bimodal on B2 in terms of j?

What is the accuracy of the bimodal on B3 in terms of k?

What is the accuracy of the local predictor on B3 when k ≫ 10 and j < 5 in terms of j and k?

What is the accuracy of the local predictor on B3 when k ≫ 10 and j > 10 in terms of j and k?

What is the accuracy of the global predictor on B3 when j = 10 and k is very, very large, in terms of j

and k?

What is the warmup time for B3 on the global predictor. (This warmup occurs whenever B3 switches
from Ns to Ts or Ts to Ns.) in terms of j and k?

7

Problem 4: (20 pts) The diagram below is for a 32-MiB (225-character) set-associative cache with the
usual 8-bit characters and a 64-bit address space.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=
Tag

Valid

Data

 Addr

Tag

 Addr

=
Tag

Valid

Hit

Out

Out

Out

22:6

64 b

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Associativity:

Memory Needed to Implement (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

8

Problem 4, continued:

(b) The code below runs on the cache from the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

What is the hit ratio running the code below? Explain

double sum = 0.0;

char *a = 0x2000000;

int i;

int ILIMIT = 1 << 11; // = 211

for (i=0; i<ILIMIT; i++) sum += a[i];

(c) The code below runs on a direct-mapped cache unrelated to the one above. When the code starts running
the cache is cold, for the solution only count accesses to array.

struct My_Struct {

double val;

double something;

double relative;

double more_data[29];

}; // Total size: 32 * sizeof(double) = 256 bytes

const int SIZE = 1 << 12;

My_Struct array[SIZE]; // &array[0] = 0x1000000

void tri()

{

double sum = 0;

for (int i=0; i<SIZE; i++) sum += array[i].val;

const double avg = sum / SIZE;

for (int i=0; i<SIZE; i++) array[i].relative += array[i].val - avg;

}

Determine the minimum cache and line size needed so that there are no misses in the second for loop.

Explain your answer.

9

Problem 5: (20 pts) Answer each question below.

(a) In a dynamically scheduled machine one would like to be able to have a large number of instructions
in flight to, say, find something to do while waiting for data from memory. Which part of the dynamically
scheduled machine is most difficult to scale up to support a large number of in-flight instructions?

Part that’s difficult to scale, and reason why.

(b) How might profiling improve the performance of the following C code:

if (a > b) { x = d / e; } else { y = q / f; }

Explain how profiling is used.

Explain why this profiled code might be faster than code compiled without profile feedback.

10

(c) In the first implementation of a company’s ISA the integer multiply instruction was slow. An Engineer
working on the second implementation is deciding whether to speed up the multiply instruction. To decide
he plans to analyze some benchmark runs, but he can’t decide whether the code should be optimized. The
compiler was designed for the first implementation.

What is the disadvantage of counting multiply usage in code compiled with optimization?

What is the disadvantage of counting multiply usage in code compiled without optimization?

(d) A memory system that can fetch 2w chars of data is less expensive and faster if the data address is a
multiple of 2w. (That’s one reason for the alignment restriction.)

How do VLIW ISAs take advantage of that?

(e) Compared to a RISC implementation, say the 5-stage MIPS, what additional logic does a CISC imple-
mentation require between the IF-stage memory port output and decode?

Additional logic for CISC.

11

