LSUEE 4720 Homework 3 soution ~ Due: 29 October 2008

Problem 1: Two MIPS implementations appear below, the first is the one presented in class, it
will be called the mux-in-EX implementation. The second, the mux-in-ID implementation, has the
ALU input multiplexers in the ID stage, to better balance critical paths. The clock frequency of
the mux-in-EX implementation is 1 GHz and the clock frequency of the mux-in-ID implementation
is 1.1 GHz.

ID — (3 EX ME WB
PCW ALU
Addr Data [-frsv |4 | Mem
Addr Data | rtv =l ALUK | Port
[4 Addr
Addr g lik | |Data Data HMD|
:4“ rtv n out o1
15:
2b0 50| (tormaty |
30 immed
Addr
Mem (" Decode) -
Port 5 dest. reg dst st dst
ata| | R
Out

ID [GEX ME WB
NPCG
ALU
Addr Data HalullH Mem
20:16
T Addr Data 1 ALUK | Port
Halu2 H Addr
PC 1A% pin | |Data Data -IMD
v In_ Out 1
250 15:0 _format
30 immed
Addr
Mem Decode dst dst dst
Port Data \ dest. reg)
out | | N

(a) With this change some of the ALU multiplexer inputs are unnecessary. Show which inputs are
unnecessary and explain why.

The WB Dyp‘ASS mu\t'\p\@xer INPUtS are unnecessary Dacause the register file can already byp&SS from the data in
port (which connects to WB) o the data out port.

Problem continued on next page.

1

http://www.ece.lsu.edu/ee4720/

(b) The code below computes the sum of the low 12 bits of elements in an integer array. Compute
the performance, in array elements per second, of this code for both the mux-in-EX system and
the mux-in-ID system. Assume that the array size is large and that the number of array elements
is even.

Note that the code Qomputes TWo array alements per \OOP iteration. The solution SUMng i 10 detarmine the number
of QyQ\QS per ireration, then use the clock TYQQUQT\Q\j 1o eompum the pQYTOYmM\QQ in array alements per second.

The pipeline diagrams appear below. Execution is shown until & repeating pattern is encountered (by examining the
p'\pQHne state pTQSQm at the first instruction in an '\YQFQUO[\). For the mux-in-EX system there are no stalls, the mux-in-1D
system nag several stalls.

The code for the mux-in-EX system @n]oys smooth, stall-free execution and so takes 8 QyQ\QS per iteration, 4 QyQ\QS

or array element, and computes at & rate of -L:0X10° _ 950+ 106 array elements per second.
p Y , p T (8-0) Y p
2

The code for the mux-in-1D system sutfers dependence stalls. From the pipeline execution diagram below one can

. B . . 1.1x10° _

S00 That it takes 23 — 11 = 12 cyclos per fteration or 6 cyeles per element. It coMPULes af a rate Of Teiu ey =

183.3 x 106 elements per second. The benetit of the higher clock frequency has been undermined by the stalls for this
code.

Performance on mux-in-EX system

LOOP: # Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1w $t0, 0($a0) IF ID EX ME WB

1w $t5, 4($a0) IF ID EX ME WB

andi $t2, $t0, Oxfff IF ID EX ME WB

add $v0, $v0, $t2 IF ID EX ME WB

andi $t7, $t5, Oxfff IF ID EX ME WB

add $v0, $v0, $t7 IF ID EX ME WB

bne $a0, $t1 LOOP IF ID EX ME WB

addi $a0, $a0, 8 IF ID EX ME WB

Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1w $t0, 0($a0) IF ID EX ME WB

Performance on mux-in-ID system

LOOP: # Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1w $t0, 0($a0) IF ID EX ME WB

1w $t5, 4($a0) IF ID EX ME WB

andi $t2, $t0, Oxfff IF ID -> EX ME WB

add $v0, $v0, $t2 IF -> ID -> EX ME WB

andi $t7, $t5, Oxfff IF -> ID EX ME WB

add $v0, $vO, $t7 IF ID -> EX ME WB

bne $a0, $t1 LOOP IF -> ID EX ME WB

addi $a0, $a0, 8 IF ID EX ME WB

Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
1w $t0, 0($a0) IF ID -> EX ME WB

1w $t5, 4($a0) IF -> ID EX ME WB

andi $t2, $t0, Oxfff IF ID -> EX ME WB

add $v0, $v0, $t2 IF -> ID -> EX ME WB

andi $t7, $t5, Oxfff IF -> ID EX ME WB

add $v0, $vO, $t7 IF ID -> EX ME WB

bne $a0, $t1 LOOP IF -> ID EX ME WB
addi $a0, $a0, 8 IF ID EX ME WB
Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1w $t0, 0($a0) IF ID -> EX..H

(¢) If, after double-checking your work, the performance of the mux-in-ID system is faster than the
old mux-in-EX system inform the professor that there is a mistake in this problem. Otherwise,
schedule (re-arrange instructions) the code above so that it performs faster (while still performing
the same computation) on the mux-in-ID system.

The solution appears below. The instructions can easily be rearranged to avoid the stalls. Now the system computes
at a rate of 275 million array elements per second, outperforming the mux-in-EX system.

LOOP: # Cycle 01 2 3 4 5 6 7 8 9 10 11 12
1w $t0, 0($a0) IF ID EX ME WB

1w $t5, 4($a0) IF ID EX ME WB

addi $a0, $a0, 8 IF ID EX ME WB

andi $t2, $t0, Oxfff IF ID EX ME WB

andi $t7, $t5, Oxfff IF ID EX ME WB

add $v0, $v0, $t2 IF ID EX ME WB

bne $a0, $t1 LOOP IF ID EX ME WB

add $v0, $v0, $t7 IF ID EX ME WB

Cycle 01 2 3 4 5 6 7 8 9 10 11 12
1w $t0, 0($a0) IF ID EX ME WB

Problem 2: You are in an alternate universe where you work for MIPS at a time when its first
implementation (mux-in-EX) has been very successful and is in the hands of customers of all types.
You are deciding on whether to make mux-in-ID the second implementation to be marketed.

(a) What role do compiler writers have in the success of mux-in-ID? Explain.

Th@y Must be able o write optimizers that can SUQQQSSTU\W sehedule the code to avoid the “new" stalls. A QOW\P\\QY
Writer of average skill should be able To schedule away the stalls in the SQmp\Q code above. Other situations are more
dimeult.

(b) If mux-in-ID is faster than mux-in-EX using the old compilers, do compilers still need to be
re-written? Explain.

Yes. The old code m‘\gm De Taster hecause fewer than 10% of instructions use a source YQg\StQY pfOGUQQd by the
'\meG'\&tQ\\j PYQQQGU\% instruction. SUPPOSQ that number were 5%. Then YQ—\NNUH% the Qomp'\\er could reduce or aliminate
stalls due to these instructions, y'\Q\d'\ng further p@rformane@ ga‘ms.

