
LSU EE 4720 Homework 3 Solution Due: 29 October 2008

Problem 1: Two MIPS implementations appear below, the first is the one presented in class, it
will be called the mux-in-EX implementation. The second, the mux-in-ID implementation, has the
ALU input multiplexers in the ID stage, to better balance critical paths. The clock frequency of
the mux-in-EX implementation is 1 GHz and the clock frequency of the mux-in-ID implementation
is 1.1 GHz.

format

immed

IR

Addr

25:21

20:16

IF
 ID
 EX
 WB
ME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst

Decode

dest. reg

NPC

=

30
 2

2’b0

+

15:0

25:0

29:26

29:0

0
 1

15:0

format

immed

IR

Addr

25:21

20:16

IF
 ID
 EX
 WB
ME

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst

Decode

dest. reg

a

l

u

1

=

30
 2

2’b0

+

15:0

25:0

29:26

29:0

0
 1

15:0

alu1

alu2

dst

NPC

(a) With this change some of the ALU multiplexer inputs are unnecessary. Show which inputs are
unnecessary and explain why.

The WB bypass multiplexer inputs are unnecessary because the register file can already bypass from the data in
port (which connects to WB) to the data out port.

Problem continued on next page.

1

http://www.ece.lsu.edu/ee4720/

(b) The code below computes the sum of the low 12 bits of elements in an integer array. Compute
the performance, in array elements per second, of this code for both the mux-in-EX system and
the mux-in-ID system. Assume that the array size is large and that the number of array elements
is even.

Note that the code computes two array elements per loop iteration. The solution strategy is to determine the number
of cycles per iteration, then use the clock frequency to compute the performance in array elements per second.

The pipeline diagrams appear below. Execution is shown until a repeating pattern is encountered (by examining the
pipeline state present at the first instruction in an iteration). For the mux-in-EX system there are no stalls, the mux-in-ID
system has several stalls.

The code for the mux-in-EX system enjoys smooth, stall-free execution and so takes 8 cycles per iteration, 4 cycles

per array element, and computes at a rate of 1.0×109

1

2
×(8−0)

= 250 × 106 array elements per second.

The code for the mux-in-ID system suffers dependence stalls. From the pipeline execution diagram below one can

see that it takes 23 − 11 = 12 cycles per iteration or 6 cycles per element. It computes at a rate of 1.1×109

1

2
×(23−11)

=

183.3× 106 elements per second. The benefit of the higher clock frequency has been undermined by the stalls for this

code.

Performance on mux-in-EX system

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw $t0, 0($a0) IF ID EX ME WB

lw $t5, 4($a0) IF ID EX ME WB

andi $t2, $t0, 0xfff IF ID EX ME WB

add $v0, $v0, $t2 IF ID EX ME WB

andi $t7, $t5, 0xfff IF ID EX ME WB

add $v0, $v0, $t7 IF ID EX ME WB

bne $a0, $t1 LOOP IF ID EX ME WB

addi $a0, $a0, 8 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw $t0, 0($a0) IF ID EX ME WB

Performance on mux-in-ID system

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw $t0, 0($a0) IF ID EX ME WB

lw $t5, 4($a0) IF ID EX ME WB

andi $t2, $t0, 0xfff IF ID -> EX ME WB

add $v0, $v0, $t2 IF -> ID -> EX ME WB

andi $t7, $t5, 0xfff IF -> ID EX ME WB

add $v0, $v0, $t7 IF ID -> EX ME WB

bne $a0, $t1 LOOP IF -> ID EX ME WB

addi $a0, $a0, 8 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

lw $t0, 0($a0) IF ID -> EX ME WB

lw $t5, 4($a0) IF -> ID EX ME WB

andi $t2, $t0, 0xfff IF ID -> EX ME WB

add $v0, $v0, $t2 IF -> ID -> EX ME WB

andi $t7, $t5, 0xfff IF -> ID EX ME WB

add $v0, $v0, $t7 IF ID -> EX ME WB

bne $a0, $t1 LOOP IF -> ID EX ME WB

addi $a0, $a0, 8 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

lw $t0, 0($a0) IF ID -> EX..

2

(c) If, after double-checking your work, the performance of the mux-in-ID system is faster than the
old mux-in-EX system inform the professor that there is a mistake in this problem. Otherwise,
schedule (re-arrange instructions) the code above so that it performs faster (while still performing
the same computation) on the mux-in-ID system.

The solution appears below. The instructions can easily be rearranged to avoid the stalls. Now the system computes
at a rate of 275 million array elements per second, outperforming the mux-in-EX system.

LOOP: # Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

lw $t0, 0($a0) IF ID EX ME WB

lw $t5, 4($a0) IF ID EX ME WB

addi $a0, $a0, 8 IF ID EX ME WB

andi $t2, $t0, 0xfff IF ID EX ME WB

andi $t7, $t5, 0xfff IF ID EX ME WB

add $v0, $v0, $t2 IF ID EX ME WB

bne $a0, $t1 LOOP IF ID EX ME WB

add $v0, $v0, $t7 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

lw $t0, 0($a0) IF ID EX ME WB

Problem 2: You are in an alternate universe where you work for MIPS at a time when its first
implementation (mux-in-EX) has been very successful and is in the hands of customers of all types.
You are deciding on whether to make mux-in-ID the second implementation to be marketed.

(a) What role do compiler writers have in the success of mux-in-ID? Explain.
They must be able to write optimizers that can successfully schedule the code to avoid the “new” stalls. A compiler

writer of average skill should be able to schedule away the stalls in the sample code above. Other situations are more
difficult.

(b) If mux-in-ID is faster than mux-in-EX using the old compilers, do compilers still need to be
re-written? Explain.

Yes. The old code might be faster because fewer than 10% of instructions use a source register produced by the
immediately preceding instruction. Suppose that number were 5%. Then re-writing the compiler could reduce or eliminate
stalls due to these instructions, yielding further performance gains.

3

