
LSU EE 4720 Homework 2 Solution Due: 15 October 2008

Problem 1: The hardware needed to implement shift instructions, such as sll, is not shown in the
implementation below. (The ALU in the implementation below does not perform shift operations.)
Add a separate shift unit to the implementation to implement the MIPS sll and sllv instructions.
The shift unit has a shift amount input and an input for the value to be shifted.

• Show exactly where the shift-amount bits come from (including bit positions).

• Add bypass paths so that the code below can execute without a stall.

• The primary goal is to not slow the clock frequency, the secondary goal is to minimize added
cost. This might affect where multiplexers are placed.
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The added hardware for the shift appears in blue and the needed bypass path appears in green.
The shifter would stall for any close dependencies on the shift amount, but such dependencies do not appear in the

sample code.
A low-cost solution would have the ALU and shifter outputs go to a EX-stage mux, this would eliminate the need

for any added logic beyond the EX stage. But since performance was the primary goal and the ALU output was likely on
the critical path such a mux could not be added. Instead, the mux is placed in the ME stage.

The new ME-to-EX bypass path adds cost. If performance were not the primary goal that added bypass could be
avoided by moving the existing bypass connection to the mux output. But that would add to the critical path in precisely
the same way the EX-stage mux discussed above would.

Common Mistakes:

Many solutions had an unnecessary “format sa” block.
Many solutions passed an sa value through the ID/EX pipeline latch even though the sa bits were part of the IMM

value.
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Some solutions passed the shifted value through the ME/WB latch even though such latch bits could be avoided by
using an ME-stage mux.

Problem 2: To answer this question see the SPARC Joint Programming Specification, a descrip-

tion of the SPARC V9 ISA, linked to the course references page. The SPARC V9 ISA is naturally
big endian. Since many programs must read data using little-endian byte order, for example when
reading a binary data file that was produced on a little-endian system, the programs need some
way to get the data into big-endian order. If loading little-endian data were only a small part of
what a program did then it could get by with some combination of ordinary instructions to convert
the data to big-endian format. For programs spending substantial time reading little-endian data
even a 9-instruction sequence may take too long.

The first instruction below is an ordinary load in SPARC V9, a 64-bit ISA (in which addresses
and registers are 64 bits). The second instruction, ldxle, is made up; it’s a load that assumes data
is in little-endian byte order. The last instructions is a real SPARC instruction for loading little
endian data.

! All load instructions below load 8 bytes into a register.

! Registers are 64 bits.

ldx [%l1], %l2 ! Ordinary load. For big-endian data.

ldxle [%l1], %l2 ! Not a real SPARC insn. For little-endian data.

ldxa [%l1] 0x88, %l2 ! SPARC’s load for little-endian data.

(a) The ldxa instruction is an example of an alternate load instruction. The alternate load instruc-
tions are intended for three kinds of access. Briefly describe the three kinds and indicate which one
is used above. What symbolic name does JPS1 give for 0x88 above?

Note: To answer this question one must read through material dealing with topics not yet
covered, for example, the concept of multiple address spaces. It is only necessary that the concept
of multiple address spaces is vaguely understood. The kind of access done by the ldxa should be
clearly understood.

The symbolic name for 0x88 is ASI PRIMARY LITTLE.
The three kinds of access are:
Accesses to an alternate address space. The ASI acts like extra bits to put on the end of an address. For

example, suppose a ldxa specified an ASI of 0x12 and an address of 0x00000000abcd0124. The full address would
be 0x1200000000abcd0124. There are many uses of such ASIs, one is to allow OS code to access its own memory
space and the memory space of a process it needs to work with.

Access to special machine registers. The ASI indicates which set of machine registers, and the address
specifies a particular register. The machine registers are used to control hardware, for example, the memory system or a
video card.

Variations on a normal memory access. This includes little-endian byte ordering, and also includes things
like fault-free loads, and new data sizes (such as byte loads to a floating point register). In this use the ASI acts like an
extension of the opcode field.

Grading Note: This was much harder than intended.

(b) Show the encoding for the three instructions above. The ldx and ldxa are real instructions, so
it’s just a matter of looking things up. For the ldxle make up an appropriate encoding.
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The encodings appear below. There are two possible ways to encode the ldx: with an immediate (shown below) or
with rs2 set to g0. The only difference between ldx and ldxle is the opcode. An unused opcode was found for ldxle
using the opcode map, in particular table E-4.
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