
LSU EE 4720 Homework 2 Solution Due: 29 February 2008
For the answers to these questions look at the ARM Architecture Reference Manual linked to

the course references page, http://www.ece.lsu.edu/ee4720/reference.html.

Problem 1: The register fields in ARM instructions are four bits and so only 16 integer registers
are accessible. The ISA manual describes ARM as having 32 integer registers, however many of
them are only accessible in particular modes.

An advantage of fewer registers is that extra bits are available in the instruction encoding, for
example, ARM three-register instruction formats would have three more bits available than the
MIPS type R format. Where in the ARM formats do you think these bits went? In your answer
give the instruction field and its purpose. There should be no equivalent in MIPS.

Every instruction format uses a cond (condition field), there is no counterpart to this in MIPS. The condition field
is used to predicate instructions, that is, control whether or not an instruction has any effect.

(See section A3-1, which conveniently lists the instruction coding for many instructions.)

Problem2: In MIPS an arbitrary 32-bit constant can be loaded into a register using a lui followed
by an ori. In ARM the immediate field for data-processing (integer) instructions is only 8 bits.

(a) Show ARM code to put an arbitrary 32-bit constant into a register without using a load
instruction. Use as few instructions as possible. Hint: take advantage of ARMS shift and rotate

capabilities.

A move followed by three or’s with shifts can do the trick.

Solution:

Note: The arbitrary constant is 0x12345678

mov r1, # 0x78, 0

orr r1, r1, # 0x56, 12

orr r1, r1, # 0x34, 8

orr r1, r1, # 0x12, 4

(b) Show how ARM can put an arbitrary constant into a register with one load instruction, whereas
in MIPS two would be required. The MIPS code is shown below. Do not assume the address of
the constant is already in a register, that would make this problem insultingly easy! Hint: Use one

of ARM’s special purpose registers.

.text

lui r1, 0x1111

lw r1, 0x2220(r1)

... a few more instructions ..

jr $ra

nop

.data

my_32_bit_constant: # Address: 0x11112220

.word 0x12345678

Solution shown below. As in the MIPS example the constant is stored in memory near the code. MIPS code requires
two instructions, one to load the high 16 bits of the address, the second to load the data (using the load offset for the low
16 bits of the address). In ARM the program counter is one of the data processing (general purpose in MIPS) registers,
r15. This makes something like a lui unnecessary in ARM because the program counter can serve as the load’s base

http://www.ece.lsu.edu/ee4720/
http://www.ece.lsu.edu/ee4720/reference.html

register. The code below is in pseudo assembly language, the assembler would convert -8 + my 32 bit constant

- HERE into the correct offset.

Solution

HERE:

ldr r1, [r15 - 8 + my_32_bit_constant - HERE]

Problem 3: In ARM the program counter is register r15, and so as far as instruction encoding
goes, is treated as a general-purpose register.

(a) Why would really keeping the program counter in the integer register file add to the cost of an
implementation?

Because to maintain an execution rate of one instruction per cycle one would need an additional read port and an
additional write port on the register file to accommodate the program counter.

(b) How does the ISA manual hint that blue parts of the implementation below is what they had
in mind? (Register r15 is not stored in the register file, it will always be bypassed from the real
PC.) (Note: The ARM implementation is far from complete and parts may not work.)

Because instructions that use their source operands in the EX stage (ordinary arithmetic and logical instructions and
address operands for loads and stores) get not the value of PC, but PC+8, which is what you’d get in the diagram below.
According to the ARM ISA stores of PC might result in PC+12 being written, which is consistent with the memory stage
being three stages ahead of IF.

format

immed

IR

Addr

19:16

3:0

IF
 ID
 EX
 WB
ME

rnv

rmv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rdv

ALU

MD

dst
 dst
 dst

Decode

dest. reg

NPC

30
 2

2’b0

+

23:0

25:0
 29:0

0
 1

11:0

