
Name Solution

Computer Architecture

EE 4720

Final Examination

7 May 2008, 10:00–12:00 CDT

Alias ISA were, was I?

Problem 1 (10 pts)

Problem 2 (30 pts)

Problem 3 (20 pts)

Problem 4 (15 pts)

Problem 5 (15 pts)

Problem 6 (10 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/


Problem 1: (10 pts) The tables below show the state of a dynamically scheduled system using method 3
during the execution of a code fragment.

• The code is preceded by many nop instructions.

• Instructions use either a 4-stage FP multiply unit (M1-M4) or a 2-stage FP add unit (A1, A2).

• Assume that there are unlimited RR, WF and execute (A,M) units.

(a) Show a program and pipeline execution diagram consistent with these tables.

�Show program and all stages used.

�On the physical register file show where physical registers are removed from the free list, using a [, and
where they are put back in the free list, using a ].

�All destination registers can be determined exactly.

�The time for all stages can be determined exactly.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

add.s f20,f0,f1 IF ID Q RR A1 A2 WF C

mul.s f15, f20, f2 IF ID Q RR M1 M2 M3 M4 WF C

add.s f20, f3, f4 IF ID Q RR A1 A2 WF C

add.s f20, f20,f5 IF ID Q RR A1 A2 WF C

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID Register Map

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

f15 9 39

f20 16 43 82 93

Commit Register Map

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

f15 9 39

f20 16 43 82 93

Physical Register File

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

9 11

16 22

39 33

43 44

82 55

93 66

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2



Problem 1, continued: The implementation diagram is provided below for references. Don’t forget to
answer the question below.

25:21


20:16


rsPR


ID:dst


ID Reg. Map


IR


NPC


+4


PC


Mem

Port


Addr


Data


PC


P
C




ID
:dst


ID
:S

t: C
,X



0,0


WB:ROB #


WB:C,X

Addr


D In


R
eo

rd
er

 B
uf

fe
r


C:dst
Control


Control


ROB #


Op, IQ


Common Data Bus (CDB)


ID: ROB #

tail


head
 WB


C


ID
IF


rtPR


F
re

e 
Li

st



ID
:dstP

R



ID
:dstP

R



C:dstPR


C


Instr. Queue


Addr


Addr


Data


Data


Addr

D In


rsPR


rtPR


rsVal


rtVal


Physical

Register File


Op, dstPR, ROB#


Out
In


Scheduler


Q

EX


dstPR


dstVal.


WB


RR


WB


Decode

dest. reg


ID
:incm

b


Addr


Addr


Data


Data


Addr

D In

D Out


ID:dst


ID:incmb

ID:dstPR


Addr


D In


C Reg. Map


Data


C:incmb


dstPR


ID


R
ec

ov
er




EA*


A1


M1


ME*


* Were called

L1 and L2.


(b) In the code fragment on the previous page only two true dependencies are possible.

�Show them (by connecting the destination and source with an arrow).

The only true dependencies are through f20. That is the second instruction depends on the first, and the fourth instruction depends
on the third. One can conclude that the second depends on the first because it waits until the first instruction’s result is bypassable,
the same for the fourth and third.

�Briefly explain why other dependencies are not possible.

The third instruction cannot depend on the second because it starts before the result from the second is available.

3



Problem 2: (30 pts) Answer the following branch predictor questions.

(a) The code below runs on two branch predictors, a bimodal predictor with a 210 entry BHT and a local
predictor with a 210 entry BHT and a 9-outcome history.

The outcomes of branch B1 form a repeating pattern as shown below.

The outcome pattern for branch B2 can be constructed by tossing a fair coin, adding a N N N for heads or
a T T T for tails, then repeating. More precisely, outcome 3i is a Bernoulli random variable with p = .5 and
outcomes 3i + 1 and 3i + 2 match outcome 3i, for i = 0, 1, 2, . . .. For example, the following is a possible
pattern of outcomes for B2: N N N T T T T T T. The following is not possible for B2: N N N T T N T T T,
it’s not possible because the number of consecutive N’s or T’s must be a multiple of 3.

LOOP:

B1: N N N N T T T N N N N T T T N N N N T T T...

B2: N N N T T T T T T N N N T T T N N N (See text.)

j LOOP

nop

For the questions below assume all tables are initially zero. All accuracies are after warmup.

�What is the accuracy of the bimodal predictor on branch B1?

Accuracy is 3
7 .

�What is the accuracy of the local predictor on B1?

The accuracy is close to 100%.

The pattern of B1 outcomes repeats with a period of 7, which is shorter than the 9-element local history. Thee is possible interference
with B2, however in part because B2 is random those interfering patterns will rarely occur frequently enough to affect B1’s accuracy.

�What is the minimum local history size needed to predict B1 with 100% accuracy ignoring branch B2.
Briefly explain.
Four outcomes.

At three outcomes pattern NNN can appear before an N or T.

�What is the approximate accuracy of the bimodal predictor on branch B2? Explain.

Accuracy is ≈ 4
6 .

B2’s outcomes come in groups of 3 and after each group the counter will be saturated at either 0 (for N) or 3 (for T). If the next
group of outcomes is the same there will be 3 correct predictions, if the next group differs there will be 1 correct prediction. Since
each case is equally likely the accuracy is 3+1

6 .

�What is the approximate accuracy of the local predictor on branch B2 ignoring B1? Explain.

Accuracy is ≈ 5
6 .

Consider the local history NNNNNNNNT, in which the last outcome is taken. Since the next outcome will always be taken the PHT
entry, after warmup, will always provide the correct prediction. Lets call this a position 1 local history since the most recent branch
is the first in a sequence of 3. All predictions made with position 1 local histories are predicted correctly after warmup, the same
for position 2 local histories. For a position 3 local history, say, NNNNNNTTT, the accuracy will be 50% because the next outcome

is random. Considering position 1, 2, and 3 histories the accuracy is
1+1+ 1

2

3 = 5
6 . Finally, consider local histories NNNNNNNNN

and TTTTTTTTT. For these B2 can be at any position, if at 1 or 2 the outcome will be N for the first and T for the second, if at 3

4



the outcome is random. Therefore the PHT entries will saturate to 0 or 1, respectively and offer correct predictions 2
3 of the time.

These patterns occur 2−3 to 2−4 of the time, and so their impact will be small.

�What is the approximate warmup time for the local predictor on B2? Note: This problem was alot more

difficult to get perfectly correct than originally intended.

A local history can span 4 groups of 3 outcomes (two complete, the oldest and the newest incomplete) or 3 groups of 3 outcomes. For
the first case there are 24 possible outcome sets, each in two different positions, say TTTTTNNNT and TTTTNNNTT. Thus there are
25 local histories for this case. For the 3 groups of 3 case there are 23 possible local histories, for a total of 25 + 23 local histories.
Each must be seen twice to warm up. The tricky part is determining how long this will take.

5



PC


Addr
 Data


D in 4b

Shift in

D in 1b

Shift in


Data Out


GHR


target


is branch


is jr


32


1


1


Addr
 Data
+


+4


15:2


8:2


7


BHT


PHT


2


control

logic


1:1


IF
 ID


5:2


Not Shown: Predictor

Update, Predictor


Recovery


(b) The predictor to the right is from
the solution to last semester’s final exam
(and this semester’s Homework 4). It
is similar to gshare except in how the
GHR is updated. Like global and gshare,
when a branch is predicted the pre-
dicted outcome is shifted into the GHR,
but when a jr is predicted four bits of
the target are shifted into the GHR.

The code fragment below is the one
used to justify the predictor, except
that now the code is in a four-iteration
loop. Important assembler code is shown
in the comments.

for ( iter=0; iter<4; iter++ ) {

int c = getchar(); // Unpredictable

switch (c) { // jr $t0 # Jump to correct case.

case ’a’: x = 3; j++; break; // addi $t1, $0, 3; j ENDSWITCH; addi $t2, $t2, 1

case ’b’: x = 7; break;

...

case ’z’: x = 1; i++; break;

} // ENDSWITCH:

if ( x < 5 ) foo(); else bar();

}

�Why might the prediction accuracy of the for loop branch be worse with the predictor above than an
ordinary gshare?

The for loop branch is the one after the test iter<4 (the branch itself is not shown). The for loop iterates four times, and so
can be predicted perfectly with just 3 outcomes of the for loop branch in the GHRusing a global or gshare predictor. Even with the
if branch present the GHR should still be large enough (though barely). However, if four bits of the jr target are shifted into the
GHR there will not be enough room for three outcomes of the for branch and so accuracy will suffer.

�Considering the assembler code above, why might it make more sense to shift in the PC of the jump (j)
instructions rather than the target of the jr? Hint: This would only be useful when the case statements had

branches.

Shifting jr bits into the GHR would not help branches in the case statements, and might hurt them. It would not help them because
the same bits would be shifted in every time (the address of the start of the case). It would hurt if the jr bits shifted in to the
GHR pushed out branch outcomes that were needed. For example, suppose a branch in the case statement has the same outcome as
the fourth previous branch (encountered before the switch was entered). Shifting in the jr bits would push out the outcome of that
branch and so accuracy would suffer.

Shifting the PC of the jump instructions would help the prediction of the x < 5 branch. Note that if the branch is reached via case
a or z it is always not taken (assuming foo is on the not-taken path) but if the branch is reached via case b it is always taken.
Suppose the PC of jump instructions (not the jump target) was shifted into the GHR, then when the x < 5 branch is reached the
value of the GHR would depend on the case statement and so for each case statement a different PHT entry would probably be used.
The PHT entries for case a and z would saturate at zero and the entry for b would saturate at 3, resulting in perfect predictions.

6



Problem 3: (20 pts) The diagram below is for a 32-MiB (225-character) 4-way set-associative cache with
a line size of 4096 (212) characters, with the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.

CPU


Addr


Data


Data


 Addr


Out


Tag


 Addr


=
Tag


Valid


Data


 Addr


Tag


 Addr


=
Tag


Valid


Hit


Out


Out


Out
       :5


32 b


256 bits

31:23

22:

31:2322:12

22:12

22:5

�Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 23

Index

22 12

Offset

11 5 4 0

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity, 225 characters, plus 4× 223−12 (32− 23 + 1) bits.

�Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

31 25

Index

24 12

Offset

11 5 4 0

7



Problem 3, continued:

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

�What is the hit ratio running the code below? Explain

double sum = 0.0;

long *a = 0x2000000; // sizeof(long) = 8 characters.

int i,j;

int ILIMIT = 1 << 10; // = 210

for (j=0; j<2; j++)

for (i=0; i<ILIMIT; i++) sum += a[ i ];

The line size of 212 characters is given, the size of an array element is 23 = 8 characters, and so there are 29 elements per line.
The first access, at i=0, will miss but bring in a line with 29 elements, the next 29 − 1 accesses are to subsequent elements on the

line and so will hit, so the hit ratio to the first line is 29−1
29 , and the same hit ratio will be achieved for all lines accessed with j=0.

Since ILIMIT * 8 is much smaller than the cache capacity every access on the second j iteration will hit. Therefore the overall

hit ratio will be 1
2
29−1
29 + 1

2 = 210−1
210 .

(c) The code below runs on a fully associative cache with 27-byte lines, not the same as the previous cache.
Let h denote the hit ratio of the code below for a cache size of 8 MiB (223 bytes). As always, assume the
cache is empty before the code starts.

void p4(double *a, double *b) {

// sizeof double = 8 characters.

double sum = 0;

int size = 1 << 8;

for ( int d=0; d<size; d++ )

for ( int col=0; col<size; col++ )

sum += b[ col * size + d ] * a[ d * size + col ];

}

�What is the minimum cache size for which the hit ratio is h? Explain.

The a array is accessed sequentially and each element is accessed once and since this is a fully-associative cache it only need have
two lines to keep a’s data safe from eviction. The b array is accessed at a stride of size * 8 characters. Call the line brought in
on the first miss to b, at d=0 and col=0, b[0]. Because size * sizeof(double) is larger than the line size the next access
to b, when col=1, will be on a different line. The b[0] line will not be accessed again until much later, when d=1 and col=0.

With a large cache the b[0] line will remain during its long wait, but with a smaller cache it might be evicted. For the cache to be
large enough it must be able to hold the b[0] line, plus all lines accessed until the b[0] is accessed a second time.

Recall that the line size is 27 bytes and size is 28. Since the access to a is sequential the number of lines due to a is
size×sizeof(double)

27 = 2823

27 = 24.

The number of lines due to b (including b[0]) is size, so the total number of lines needed is at least size + 24 = 28 + 24

which corresponds to a cache size of 27(28 + 24) characters.

Grading Note: No one came close to answering this.

8



Problem 4: (15 pts) Answer each question below.

(a) Describe what’s wrong with each execution below.

�What’s wrong with this execution on our usual bypassed 5-stage MIPS implementation.

# Cycle 0 1 2 3 4 5

lw r1, 0(r2) IF ID EX ME WB

add r3, r1, r4 IF ID EX ME WB

Because the value for r1 created by lw is not available until the end of the ME stage, in cycle 3, there is no way to bypass its value
when needed, by the EX stage for the add, at the beginning of cycle 3.

� What are the two problems below with this execution on our usual scalar statically scheduled MIPS
implementation?

add.d f0, f1, f2 IF ID A1 A2 A3 A4 ME WF

The register numbers for an add.d instruction must be even (it uses pairs of registers for 64-bit operands). Also, the FP pipeline
does not have an ME stage.

�What’s wrong with this execution on a 2-way superscalar dynamically scheduled machine?

# Cycle 0 1 2 3 4 5 6 7 8 9

add r1,r2,r3 IF ID Q RR EX WB C

add r4,r1,r6 IF ID Q RR EX WB C

add r7,r8,r9 IF ID Q RR EX WB C

add r8,r2,r1 IF ID Q RR EX WB C

# Cycle 0 1 2 3 4 5 6 7 8 9

Because the processor is 2-way superscalar, the commit in cycle 8 should occur in cycle 7, otherwise execution would be limited to 1
instruction per cycle. Note that the last add instruction waits one cycle because there are only two execute pipelines (meaning two
RR, two EX, etc.)

9



(b) Alas, it is unlikely that there will soon be 16-way, statically scheduled, superscalar implementations that
anyone would want to buy. Three reasons are started below, complete them.

� It would be too expensive because . . .

The cost of the bypass paths would be much too high, proportional to 162. The output of each of the 16 ALUs would have to bypass
to each of the 16× 2 ALU inputs.

Note: The answer “because 16 copies of most parts are needed” is wrong because one should expect to pay 16 times as much as
long as there is the potential to get 16 times the performance.

�The clock frequency would be too low because . . .

To find dependencies, control logic would have to compare an instruction’s source registers to up to 15 other instructions in ID, plus
16 instructions per downstream stage (two in a 5-stage design). That would put a strain on critical path.

Having 16 copies of everything plus the necessary bypass to avoid stalls would require substantially more area than, say, a 4-way
processor. The increased physical distance would increase the propagation time of signals and so require a lower clock frequency.

�A few programs might realize the full potential of the processor, but most won’t because . . .

True dependencies within 16 instructions of each other could cause a stall, it would be hard for a compiler to avoid those with
scheduling.

10



Problem 5: (15 pts) Answer each question below.

(a) In ARM the PC is a general purpose register, r15. It could have been defined in ways consistent with
ISA design principles, but it wasn’t.

�Describe how the use of r15 appears contrary to the usual goals of an ISA.

The value written when storing r15 or using it in a calculation depends upon the implementation. The point of separating an ISA
from an implementation is to avoid making the program dependent upon details of an implementation (thus loosing portability).

(b) The two code fragments below are supposed to do the same thing, the first is MIPS the second is
SPARC. In both a branch is taken if a less-than comparison is true. The code would work correctly if the
called subroutine returned immediately.

�Explain why the SPARC code may not execute as intended.

The SPARC branch tests a condition code. It’s possible that an instruction in some subroutine has overwritten the condition
codes to something else.

�Suggest a fix.

Move the subcc after the call (or re-execute it).

# MIPS Code

slt $s1, $s2, $s3 # Registers %s0-%s7 preserved.

jal some_subroutine

nop

bneq $s1, $0 SKIP1

...

! SPARC code

subcc %l2, %l3, %l1 ! Registers %l0-%l7 preserved.

call some_subroutine

nop

blt SKIP1

...

11



Hint: The following two questions are really asking about exceptions.

(c) A compiler writer is wondering whether dead-code elimination should remove the first assignment to x
in the code fragment below (which sure looks dead, right?).

x = a / b;

x = a + c;

The guy down the hall wrote a program that included these two lines and that program would run differently
if dead-code elimination removed the first assignment (the one with the division). The difference has nothing
to do with timing or the size of the program.

�Why might the program have run differently?

The program might have used a signal handler to be run on a division by zero exception.

� The compiler writer wants to DTRT (do the right thing), how does he or she find out what the right
thing is?

It’s possible to argue that a signal handler can be useful. A stronger argument is that dead-code elimination is even more useful and
that most similar needs for a signal handler could be met by tricking the compiler into believing the code isn’t dead. (Say, by using
it in an if statement.)

However, the compiler must generate code that runs correctly as defined by the language specification. The writer then
must look at the language specification to see what the correct behavior should be. If the specification says nothing then see what
most other compilers do.

Answers which did not mention some kind of a language specification or common behavior were considered wrong.

(d) The code fragment below may have come from the code in the previous problem.

div.d f0, f2, f4

add.d f0, f2, f6

Designers of an implementation are considering whether to avoid WAW hazards like the one above by convert-
ing the div.d to a nop when the add.d reaches ID. This will work correctly under ordinary circumstances.

�Show a pipeline execution diagram illustrating the WAW hazard.

# SOLUTION

# Cycle 0 1 2 3 4 5 6 7 8 9

div.d f0, f2, f4 IF ID DI DI DI DI DI DI DI WF

add.d f0, f2, f6 IF ID A1 A2 A3 A4 WF

�Under what circumstances will this produce the wrong answer?

If the add.d raises an exception. In that case the signal handler won’t see the value written by the div.d because it was converted
to a nop.

12



Problem 6: (10 pts) SPECcpu provides a separate set of training inputs to be used for feedback-directed
optimization (FDO) techniques, such as profiling.

�Why is a separate training input set needed?

Using the same input set to train and run will produce the best possible results, but it’s not something that can be used in real life
because input data changes with each run and there is usually no way to determine it in advance.

Profiling using the training set provides a better indication of the benefits of profiling than the inflated numbers obtained by using
the same data to profile and run.

�Why might an honest and good tester want to substitute a different training set?

There may be newer techniques for choosing good training sets, techniques that anyone can use. The SPEC training sets however
used older less-effective training set selection techniques. The tester would like the results to reflect the benefits of his new and
perfectly legitimate training selection methods.

The run and reporting rules don’t allow such a substitution.

�Why do you think the run and reporting rules don’t allow a training set substitution when they allow
so much flexibility on compilers, optimizations, and libraries?

The rule would have to say that the training set can’t be chosen based on an exact knowledge of the reference (data-collection run)
inputs. The problem is determining whether a tester’s training data violates this rule.

13


