
Name

Computer Architecture

EE 4720

Final Examination

7 May 2008, 10:00–12:00 CDT

Alias

Problem 1 (10 pts)

Problem 2 (30 pts)

Problem 3 (20 pts)

Problem 4 (15 pts)

Problem 5 (15 pts)

Problem 6 (10 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: (10 pts) The tables below show the state of a dynamically scheduled system using method 3
during the execution of a code fragment.

• The code is preceded by many nop instructions.

• Instructions use either a 4-stage FP multiply unit (M1-M4) or a 2-stage FP add unit (A1, A2).

• Assume that there are unlimited RR, WF and execute (A,M) units.

(a) Show a program and pipeline execution diagram consistent with these tables.

Show program and all stages used.

On the physical register file show where physical registers are removed from the free list, using a [, and
where they are put back in the free list, using a].

All destination registers can be determined exactly.

The time for all stages can be determined exactly.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

IF ID

IF ID

IF ID

IF ID

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID Register Map

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

f15 9 39

f20 16 43 82 93

Commit Register Map

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

f15 9 39

f20 16 43 82 93

Physical Register File

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

9 11

16 22

39 33

43 44

82 55

93 66

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2

Problem 1, continued: The implementation diagram is provided below for references. Don’t forget to
answer the question below.

25:21

20:16

rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem

Port

Addr

Data

PC

P
C

ID
:dst

ID
:S

t: C
,X

0,0

WB:ROB #

WB:C,X

Addr

D In

R
eo

rd
er

 B
uf

fe
r

C:dst
Control

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #

tail

head
 WB

C

ID
IF

rtPR

F
re

e
Li

st

ID
:dstP

R

ID
:dstP

R

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr

D In

rsPR

rtPR

rsVal

rtVal

Physical

Register File

Op, dstPR, ROB#

Out
In

Scheduler

Q

EX

dstPR

dstVal.

WB

RR

WB

Decode

dest. reg

ID
:incm

b

Addr

Addr

Data

Data

Addr

D In

D Out

ID:dst

ID:incmb

ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

R
ec

ov
er

EA*

A1

M1

ME*

* Were called

L1 and L2.

(b) In the code fragment on the previous page only two true dependencies are possible.

Show them (by connecting the destination and source with an arrow).

Briefly explain why other dependencies are not possible.

3

Problem 2: (30 pts) Answer the following branch predictor questions.

(a) The code below runs on two branch predictors, a bimodal predictor with a 210 entry BHT and a local
predictor with a 210 entry BHT and a 9-outcome history.

The outcomes of branch B1 form a repeating pattern as shown below.

The outcome pattern for branch B2 can be constructed by tossing a fair coin, adding a N N N for heads or
a T T T for tails, then repeating. More precisely, outcome 3i is a Bernoulli random variable with p = .5 and
outcomes 3i + 1 and 3i + 2 match outcome 3i, for i = 0, 1, 2, For example, the following is a possible
pattern of outcomes for B2: N N N T T T T T T. The following is not possible for B2: N N N T T N T T T,
it’s not possible because the number of consecutive N’s or T’s must be a multiple of 3.

LOOP:

B1: N N N N T T T N N N N T T T N N N N T T T...

B2: N N N T T T T T T N N N T T T N N N (See text.)

j LOOP

nop

For the questions below assume all tables are initially zero. All accuracies are after warmup.

What is the accuracy of the bimodal predictor on branch B1?

What is the accuracy of the local predictor on B1?

What is the minimum local history size needed to predict B1 with 100% accuracy ignoring branch B2.
Briefly explain.

What is the approximate accuracy of the bimodal predictor on branch B2? Explain.

What is the approximate accuracy of the local predictor on branch B2 ignoring B1? Explain.

What is the approximate warmup time for the local predictor on B2? Note: This problem was alot more

difficult to get perfectly correct than originally intended.

4

PC

Addr
 Data

D in 4b

Shift in

D in 1b

Shift in

Data Out

GHR

target

is branch

is jr

32

1

1

Addr
 Data
+

+4

15:2

8:2

7

BHT

PHT

2

control

logic

1:1

IF
 ID

5:2

Not Shown: Predictor

Update, Predictor

Recovery

(b) The predictor to the right is from
the solution to last semester’s final exam
(and this semester’s Homework 4). It
is similar to gshare except in how the
GHR is updated. Like global and gshare,
when a branch is predicted the pre-
dicted outcome is shifted into the GHR,
but when a jr is predicted four bits of
the target are shifted into the GHR.

The code fragment below is the one
used to justify the predictor, except
that now the code is in a four-iteration
loop. Important assembler code is shown
in the comments.

for (iter=0; iter<4; iter++) {

int c = getchar(); // Unpredictable

switch (c) { // jr $t0 # Jump to correct case.

case ’a’: x = 3; j++; break; // addi $t1, $0, 3; j ENDSWITCH; addi $t2, $t2, 1

case ’b’: x = 7; break;

...

case ’z’: x = 1; i++; break;

} // ENDSWITCH:

if (x < 5) foo(); else bar();

}

Why might the prediction accuracy of the for loop branch be worse with the predictor above than an
ordinary gshare?

Considering the assembler code above, why might it make more sense to shift in the PC of the jump (j)
instructions rather than the target of the jr? Hint: This would only be useful when the case statements had

branches.

5

Problem 3: (20 pts) The diagram below is for a 32-MiB (225-character) 4-way set-associative cache with
a line size of 4096 (212) characters, with the usual 8-bit characters.

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

Fill in the blanks in the diagram.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=
Tag

Valid

Data

 Addr

Tag

 Addr

=
Tag

Valid

Hit

Out

Out

Out
 :5

32 b

Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Memory Needed to Implement (Indicate Unit!!):

Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

6

Problem 3, continued:

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

What is the hit ratio running the code below? Explain

double sum = 0.0;

long *a = 0x2000000; // sizeof(long) = 8 characters.

int i,j;

int ILIMIT = 1 << 10; // = 210

for (j=0; j<2; j++)

for (i=0; i<ILIMIT; i++) sum += a[i];

(c) The code below runs on a fully associative cache with 27-byte lines, not the same as the previous cache.
Let h denote the hit ratio of the code below for a cache size of 8 MiB (223 bytes). As always, assume the
cache is empty before the code starts.

void p4(double *a, double *b) {

// sizeof double = 8 characters.

double sum = 0;

int size = 1 << 8;

for (int d=0; d<size; d++)

for (int col=0; col<size; col++)

sum += b[col * size + d] * a[d * size + col];

}

What is the minimum cache size for which the hit ratio is h? Explain.

7

Problem 4: (15 pts) Answer each question below.

(a) Describe what’s wrong with each execution below.

What’s wrong with this execution on our usual bypassed 5-stage MIPS implementation.

Cycle 0 1 2 3 4 5

lw r1, 0(r2) IF ID EX ME WB

add r3, r1, r4 IF ID EX ME WB

What are the two problems below with this execution on our usual scalar statically scheduled MIPS
implementation?

add.d f0, f1, f2 IF ID A1 A2 A3 A4 ME WF

What’s wrong with this execution on a 2-way superscalar dynamically scheduled machine?

Cycle 0 1 2 3 4 5 6 7 8 9

add r1,r2,r3 IF ID Q RR EX WB C

add r4,r1,r6 IF ID Q RR EX WB C

add r7,r8,r9 IF ID Q RR EX WB C

add r8,r2,r1 IF ID Q RR EX WB C

Cycle 0 1 2 3 4 5 6 7 8 9

8

(b) Alas, it is unlikely that there will soon be 16-way, statically scheduled, superscalar implementations that
anyone would want to buy. Three reasons are started below, complete them.

It would be too expensive because . . .

The clock frequency would be too low because . . .

A few programs might realize the full potential of the processor, but most won’t because . . .

9

Problem 5: (15 pts) Answer each question below.

(a) In ARM the PC is a general purpose register, r15. It could have been defined in ways consistent with
ISA design principles, but it wasn’t.

Describe how the use of r15 appears contrary to the usual goals of an ISA.

(b) The two code fragments below are supposed to do the same thing, the first is MIPS the second is
SPARC. In both a branch is taken if a less-than comparison is true. The code would work correctly if the
called subroutine returned immediately.

Explain why the SPARC code may not execute as intended.

Suggest a fix.

MIPS Code

slt $s1, $s2, $s3 # Registers %s0-%s7 preserved.

jal some_subroutine

nop

bneq $s1, $0 SKIP1

...

! SPARC code

subcc %l2, %l3, %l1 ! Registers %l0-%l7 preserved.

call some_subroutine

nop

blt SKIP1

...

10

Hint: The following two questions are really asking about exceptions.

(c) A compiler writer is wondering whether dead-code elimination should remove the first assignment to x
in the code fragment below (which sure looks dead, right?).

x = a / b;

x = a + c;

The guy down the hall wrote a program that included these two lines and that program would run differently
if dead-code elimination removed the first assignment (the one with the division). The difference has nothing
to do with timing or the size of the program.

Why might the program have run differently?

The compiler writer wants to DTRT (do the right thing), how does he or she find out what the right
thing is?

(d) The code fragment below may have come from the code in the previous problem.

div.d f0, f2, f4

add.d f0, f2, f6

Designers of an implementation are considering whether to avoid WAW hazards like the one above by convert-
ing the div.d to a nop when the add.d reaches ID. This will work correctly under ordinary circumstances.

Show a pipeline execution diagram illustrating the WAW hazard.

Under what circumstances will this produce the wrong answer?

11

Problem 6: (10 pts) SPECcpu provides a separate set of training inputs to be used for feedback-directed
optimization (FDO) techniques, such as profiling.

Why is a separate training input set needed?

Why might an honest and good tester want to substitute a different training set?

The run and reporting rules don’t allow such a substitution.

Why do you think the run and reporting rules don’t allow a training set substitution when they allow
so much flexibility on compilers, optimizations, and libraries?

12

