[SU EE 4720 Homework 3 Due: 15 October 2007

The problems below ask about VAX instructions, which were not yet covered in class. For information
on these instructions see the VAX Macro and Instruction Set manual linked to the EE 4720 references page.

Problem 1: The VAX locc instruction finds the first occurrence of a character in a string (see example
below). The first operand specifies the character to find (A in the example), the second operand specifies
the length of the string (in register r2), and the third operand specifies the address of the first character of
the string (register r3 below).

Find first occurrence of 65 (ASCII A) in memory starting at
address r3 and continuing for the next r2 characters.
locc #65, r2, (r3)

(@) Show how the sample instruction above is encoded. Include the name of each field and its value for the
example above, not for the general case. In the original assignment the third argument was shown as r3,
not (r3) which is correct.

(b) Provide an example of locc in which the encoded second and third operands each require more space
than the example above. At least one of these operands should use a memory addressing mode that is not
available in MIPS. Show the instruction in assembler and show its encoding.

http://www.ece.lsu.edu/ee4720/

For the problems below consider a MIPS implementation similar to the one illustrated below and a DF-
equivalent VAX implementation. Like the MIPS implementation, the DF-equivalent VAX implementation
can read two registers per cycle, write one register per cycle, perform one ALU operation per cycle, and one
memory operation per cycle (not including fetch). The DF-equivalent VAX implementation may or may not
be pipelined and regardless does not suffer any kind of penalty for the complexity and size of its control
logic. Assume that the DF-equivalent VAX takes one cycle to fetch an instruction and one cycle to decode
an instruction, regardless of the instruction’s size or complexity.

Unlike MIPS the DF-equivalent VAX may be able to simultaneously use its ALU and memory port for
the same instruction (in the illustrated MIPS implementation they would be for two different instructions).
The 2-read, 1-write register restriction only applies to registers defined by the ISA. As with MIPS pipeline
latches, the DF-equivalent VAX can read or write as many temporary registers per cycle that it needs.

When showing the execution of an instruction on the DF-equivalent VAX use something like a pipeline
diagram and explain what’s going on when things aren’t clear. For example, here is how an add instruction
might execute:

Note: Destination is rightmost register (r3)

Cycle 01 2 3 4 5 6

add 123(r1), (r2)+, r3 IF ID EX ME ME EX WB
EX WB

sub IF ID EX

Cycle 2: EX: 123 + r1

Cycle 3: ME load (123+rl)

Cycle 4: ME: load (r2)

Cycle 4: EX: r2 + 4

Cycle 5: EX: add (123+r1) + (r2)

Cycle 5: WB: wb r2+4 to r2

Cycle 6: WB: WB sum to r3.

In the example above the add instruction can be said to have taken four cycles since that’s how long
the sub might have had to wait to execute (to avoid overlap).
Use the following MIPS implementation for comparison:

D [& EX ME WB
PCW ALU
Addr Data |-——f rsv | | Mem
Addr Data |—{ rtv b ALUE | Port
[H Addr
A% om [TC |Data Data HMD
:4“ rtv In Out o1
260 150] (Tormay | Ry
30432 Nimmed/
Addr
Mem (Decode \
dst dst dst
dest. re
Port Data| | RrRL \—QJ
Out

Problem 2: The MIPS jal instruction supports a procedure call by saving a return address in r31, other
activities normally done on a procedure call, such as saving registers to the stack, must be performed using
additional MIPS instructions. In contrast the VAX calls instruction not only saves a return address but
also saves registers in the stack and performs other common activities.

MIPS and VAX examples are shown below in which the VAX code uses a calls instruction and the
MIPS code performs a roughly equivalent operation. In particular, in both code samples three registers must
be saved on the stack. (The calls instruction performs additional actions, but for this problem assume it
does only what the MIPS code shows.)

(a) Show how the calls instruction would execute in the DF-equivalent VAX implementation. Note that
the calls instruction reads the word at the beginning of the called routine to determine which registers to
save.

(b) Is the DF-equivalent VAX implementation substantially faster on this instruction, about the same, or
slower?

VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX VAX
calls $0, myroutine

myroutine:
.data
.word 0x046
XO0r ...

MIPS MIPS MIPS MIPS MIPS MIPS MIPS MIPS MIPS MIPS MIPS MIPS MIPS

jal myroutine

myroutine:
sw $r6, 0x18($fp)
sw $r2, 0x8($fp)
sw $r1, 0x4($fp)
addi $fp, $sp, O

Xor ...
myroutine:
Cycle 01 2 3 45 6 7 8 9
sw $r6, 0x18($fp) IF ID EX ME WB
sw $r2, 0x8($fp) IF ID EX ME WB
sw $rl, 0x4($fp) IF ID EX ME WB
addi $fp, $sp, O IF ID EX ME WB

XOor ... IF ID EX ME WB

Problem 3: The VAX locc instruction is another example of an instruction that would not be included
in a RISC ISA because it could not be pipelined in any reasonable way. For this problem assume that
implementations of character location can only read one byte at a time. (A fast implementation might read
a word and check each position for the sought byte, but not in this problem.)

(a) What is the minimum amount of time that the DF-equivalent VAX implementation might take to execute
locc with a length parameter equal to n? Show how the instruction would execute.

(b) The MIPS routine below performs the same operation (except for the r0 and rl return values). In terms
of n how long does it take to compute locc?

locc:
Call Values:
a0: char: Character to find.
al: len: Length of string.
a2: addr: Address of first character of string.
Return Value:
vO: 0 if character not found, 1 if found.
Note: Other locc return values not computed.
j START
add $t1, $al, $a2 # $t1: Stop address (last char + 1)
LOOP:
beq $t0, $a0 FOUND
addi $a2, $a2, 1
START:
bne $a2, $t1, LOOP
1b $t0, 0($a2)
jr $ra
addi $vO, $0, O
FOUND:

jr $ra
addi $vO0, $0, 1

(¢) Which implementation has the speed advantage? Explain.

(d) Can instructions be added to MIPS consistent with RISC principles that would substantially improve its
performance? If not, explain what gives locc an inherent advantage on CISC.

