LSUEE 4720 Homework 2 soltion Due: 1 October 2007

For lecture material relevant to this assignment see
http://www.ece.lsu.edu/eed720/2007f/1s1i06.pdf]. For some background and a list of similar
problems see the statically scheduled study guide,
http://www.ece.lsu.edu/ee4720/guides/ssched.pdf]. Please make an effort to solve this prob-
lem based on an understanding of the material, use the solution to similar problems (if any) only
for hints. Feel free to ask questions using the forums, E-mail, or in person. Ezam problems will
be based on the assumption that students completed (really completed) homework assignments, so
don’t short-change yourself!

Problem 1: Consider the following MIPS code and implementation:

Cycle 0 1 2

lw r2, 0(r10) IF ID EX
LOOP:

lw r1, 0(xr2) IF ID

add r3, r1, r4
sw r3, 4(r2)

bne r3, r5 LOOP
addi r2, r2, 8

Cycle 0 1 2
A: 2
B: 2
C:
ID ME WB
ALU
2521 Addr Data Mem
2016 Addr Data ALU Port
— Addr
(A9 pin | |Data Data HMD
rv In Out o1
: 15:0| ~Tormat\
Addr xa2 (C
M xdi
em (Decode
Port 5 {_dest. reg) dst dst dst
ata] | IR
Out
— — — —

(a) Complete the pipeline execution diagram of the execution of the code above on the implementa-
tion illustrated for at least the first two iterations. (See the next part for instructions on the “A:”,
etc.)

http://www.ece.lsu.edu/ee4720/
http://www.ece.lsu.edu/ee4720/2007f/lsli06.pdf
http://www.ece.lsu.edu/ee4720/guides/ssched.pdf

solution appears arter part b, Delow. Note that the branch stalls due £o a dependency on the add instruction whieh
produces one of the branch source registers, r3.

(b) After the addi instruction three labels are shown, A:, B:, and C:; similar labels are shown, in
blue and circled, in the implementation. On the pipeline execution diagram show the values on the
wires (which are multiplexor inputs) that those labels point to only in cycles in which those signals
are used. The values are already shown for cycles 0, 1, and 2. Signals A and B are used in cycle 2
(but not 0 or 1), signal C is not used in cycles 0-2.

Note that the multiplexor inputs are numbered from the top starting at zero.

SOLUTION

Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14

lw r2, 0(r10) IF ID EX ME WB
LOOP:
First Iteration XX

lw r1, 0(r2) IF ID -> EX ME WB

add r3, r1, r4 IF -> ID -> EX ME WB

sw r3, 4(r2) IF -> ID EX ME WB

bne r3, r5 LOOP IF ID -> EX ME WB

addi r2, r2, 8 IF -> ID EX ME WB
Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A: 2 3 3 2 2 0 2

B: 2 2 1 2 2 2 1 2

C: 1 1 ...
Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Second Iteration XX

lw r1, 0(xr2) IF ID EX ME WB

add r3, r1, r4 IF ID -> EX ME WB

sw r3, 4(r2) IF -> ID EX ME WB

bne r3, r5 LOOP IF ID -> EX ME WB

addi r2, r2, 8 IF -> ID EX ME WB
Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Third Iteration XX

1w r1, 0(r2) IF ID EX ME WB

(¢) Find the CPI of this loop on the illustrated implementation for a large number of iterations.

In the Trst iteration the 10ad in the 100p body stalls because of 4 dependency with & 10ad outside the 100p, obviously
that won't happen on subsequent iterations and so the Trst iteration is nNOL representative. The second iteration starts
at eyele 9 (Wh@ﬂ the Tirst instruction is TQtQhQG), the third iteration starts in eycle 16, and so the second iteration takes
16—-9=7 cyeles. Both of these iterations start with the p'\pe\m@ in an identical state: the addi is in 1D, the bne i8
in EX, ete. Therefore the third iteration will take exactly the same amount of time as iteration 2, a5 will all subsequent

iterations. Therefore the CPI for 4 large number of iterations is | 162 =1.4|

(d) Add bypass connection(s) so that the loop above executes as quickly as possible. Show the CPI
with those connections.

The stalls in eycles 5 and 12 can't be eliminated Dy byp&SSQS Decause the data arrives at the end of Q\jQ\Q 5and 12,
but it would be needed at the beginning of cycle 5 and 12 to avoid the stall.

The stall at cycles 8 and 15 can be aliminated because the data is available at the end of cycles 6 and 13, and the
branch needs it in the middle of cyeles 7 and 14. The added bypasses, shown in , aliminate the stall.

ID EX ME WB
“PCW ALU
25:21 —
Addr Data | rsv Mem
2078) ngor Data | v N ’o ALU Port
,,: 4 Addr
Addr b, Y | |Data Data HMD,
rv In Out 01
150, Tormal iy !
Nomed/ ;
xall
xa2 (C
xdi
(Decode
{_dest. reg) dst dst dst
— — —

(e) Even with bypass connections the loop above, regrettably, executes with stalls (or at least it
should!). Schedule (re-arrange) the code so that it executes without stalls. The scheduled loop
should still load and store one value per iteration. Minor changes to the code can be made, such
as changing register numbers and immediate values.

The code below executes without a stall with the byp‘ASSQS added abovae.

Scheduled Code

1w r2, 0(ri10)

1w rl, 0(r2)

LOOP:

Cycle 01 2 3 4 5 6 7 8
addi r2, r2, 8 IF ID EX ME WB

add r3, r1, r4d IF ID EX ME WB

sw r3, -4(r2) IF ID EX ME WB

bne r3, r5 LOOP IF ID EX ME WB
1w r1, 0(r2) IF ID EX ME WB

Cycle 01 2 3 4 5 6 7 8

