
LSU EE 4720 Homework 2 Solution Due: 1 October 2007
For lecture material relevant to this assignment see

http://www.ece.lsu.edu/ee4720/2007f/lsli06.pdf. For some background and a list of similar
problems see the statically scheduled study guide,
http://www.ece.lsu.edu/ee4720/guides/ssched.pdf. Please make an effort to solve this prob-
lem based on an understanding of the material, use the solution to similar problems (if any) only
for hints. Feel free to ask questions using the forums, E-mail, or in person. Exam problems will
be based on the assumption that students completed (really completed) homework assignments, so
don’t short-change yourself !

Problem 1: Consider the following MIPS code and implementation:

Cycle 0 1 2

lw r2, 0(r10) IF ID EX

LOOP:

lw r1, 0(r2) IF ID

add r3, r1, r4

sw r3, 4(r2)

bne r3, r5 LOOP

addi r2, r2, 8

Cycle 0 1 2

A: 2

B: 2

C:

format

immed

IR

Addr
25:21

20:16

IF
 ID
 EX
 WB
ME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst
Decode

dest. reg

NPC

=

30
 2

2’b0

+

15:0

25:0

29:26

29:0

0
1

15:0

A

xa1

xa2

xdi

B

C

(a) Complete the pipeline execution diagram of the execution of the code above on the implementa-
tion illustrated for at least the first two iterations. (See the next part for instructions on the “A:”,
etc.)

http://www.ece.lsu.edu/ee4720/
http://www.ece.lsu.edu/ee4720/2007f/lsli06.pdf
http://www.ece.lsu.edu/ee4720/guides/ssched.pdf

Solution appears after part b, below. Note that the branch stalls due to a dependency on the add instruction which
produces one of the branch source registers, r3.

(b) After the addi instruction three labels are shown, A:, B:, and C:; similar labels are shown, in
blue and circled, in the implementation. On the pipeline execution diagram show the values on the
wires (which are multiplexor inputs) that those labels point to only in cycles in which those signals

are used. The values are already shown for cycles 0, 1, and 2. Signals A and B are used in cycle 2
(but not 0 or 1), signal C is not used in cycles 0-2.

Note that the multiplexor inputs are numbered from the top starting at zero.

SOLUTION

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lw r2, 0(r10) IF ID EX ME WB

LOOP:

First Iteration XX

lw r1, 0(r2) IF ID -> EX ME WB

add r3, r1, r4 IF -> ID -> EX ME WB

sw r3, 4(r2) IF -> ID EX ME WB

bne r3, r5 LOOP IF ID -> EX ME WB

addi r2, r2, 8 IF -> ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A: 2 3 3 2 2 0 3 2 ...

B: 2 2 1 2 2 2 1 2 ...

C: 1 1 ...

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Second Iteration XX

lw r1, 0(r2) IF ID EX ME WB

add r3, r1, r4 IF ID -> EX ME WB

sw r3, 4(r2) IF -> ID EX ME WB

bne r3, r5 LOOP IF ID -> EX ME WB

addi r2, r2, 8 IF -> ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Third Iteration XX

lw r1, 0(r2) IF ID EX ME WB

(c) Find the CPI of this loop on the illustrated implementation for a large number of iterations.

In the first iteration the load in the loop body stalls because of a dependency with a load outside the loop, obviously
that won’t happen on subsequent iterations and so the first iteration is not representative. The second iteration starts
at cycle 9 (when the first instruction is fetched), the third iteration starts in cycle 16, and so the second iteration takes
16 − 9 = 7 cycles. Both of these iterations start with the pipeline in an identical state: the addi is in ID, the bne is
in EX, etc. Therefore the third iteration will take exactly the same amount of time as iteration 2, as will all subsequent

iterations. Therefore the CPI for a large number of iterations is 16−9

5
= 1.4 .

(d) Add bypass connection(s) so that the loop above executes as quickly as possible. Show the CPI
with those connections.

The stalls in cycles 5 and 12 can’t be eliminated by bypasses because the data arrives at the end of cycle 5 and 12,
but it would be needed at the beginning of cycle 5 and 12 to avoid the stall.

The stall at cycles 8 and 15 can be eliminated because the data is available at the end of cycles 6 and 13, and the
branch needs it in the middle of cycles 7 and 14. The added bypasses, shown in green, eliminate the stall.

format

immed

IR

Addr
25:21

20:16

IF
 ID
 EX
 WB
ME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst
Decode

dest. reg

NPC

=

30
 2

2’b0

+

15:0

25:0

29:26

29:0

0
1

15:0

A

xa1

xa2

xdi

B

C

(e) Even with bypass connections the loop above, regrettably, executes with stalls (or at least it
should!). Schedule (re-arrange) the code so that it executes without stalls. The scheduled loop
should still load and store one value per iteration. Minor changes to the code can be made, such
as changing register numbers and immediate values.

The code below executes without a stall with the bypasses added above.

Scheduled Code

lw r2, 0(r10)

lw r1, 0(r2)

LOOP:

Cycle 0 1 2 3 4 5 6 7 8

addi r2, r2, 8 IF ID EX ME WB

add r3, r1, r4 IF ID EX ME WB

sw r3, -4(r2) IF ID EX ME WB

bne r3, r5 LOOP IF ID EX ME WB

lw r1, 0(r2) IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8

