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Problem 1: (25 pts) Suppose it turns out that many mul.d instructions are executed with a 0 or 1 for one
of the operands, in that case the product could be computed in less than the six stages used in the class
implementation. The MIPS implementation below includes a new multiply fast unit, Mf, for such situations.

Mf has two inputs (unlabeled) and two outputs, valid and prod (they are not yet connected to anything).
As with A1 and M1, IEEE 754 doubles are expected at the inputs of Mf. If one of the inputs is 0 or 1 then the
valid output will be 1 (otherwise it is 0). If valid is 1 the prod output is the product of the two inputs;
both outputs are available by the end of the cycle.

Call a multiply fast if one of its operands is 0 or 1.

USE NEXT PAGE FOR SOLUTION!
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USE NEXT PAGE FOR SOLUTION!

(a) Add datapath and control logic for Mf meeting the requirements below:
D Add datapath so the Mf output will be written to the FP register file at the right time.

D In order of decreasing priority: the added datapath must be correct, must not increase critical paths,
and should use as little new hardware as possible.

D The control logic must detect and handle the new WF structural hazard with preceding instructions that’s
possible when writing a fast product.

D If Mf is used then the mul.d’s usual WF slot should be available for other instructions. For example,
suppose the second instruction after mul.d is an add.d. If the multiply is normal the add.d would stall, if
the multiply is fast the add.d shouldn’t stall (at least for the WF conflict with mul.d).



(b) Add bypass hardware and control logic so that the code below executes without a stall if the mul.d turns
out to be fast. For this part assume that multiplexors at FP unit inputs won’t add to critical path.

mul.d £f2, f4, £f6

add.d £8, f2, f10

D Bypass hardware for case above.
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Problem 2: (25 pts) Answer the following predictor questions.
(a) The code below executes on three systems, one uses a bimodal predictor with a 2'4-entry BHT, one uses

a local predictor with a 2'%-entry BHT and a 7-outcome local history, and one uses a global predictor with
a T-outcome global history. Consider the execution of the code below, all branches are shown.

BIGLOOP:

éi; beq r1, r2, SKIP1 TTTTNTTTTNTTTTNTTTTN ...

SKTP1:

éé; bne r3,r4 SKIP2 TTTNNNTTTNNNTTTNNNTTTDNNN ...
ékiPQ:

j'éIGLODP

nop

For partial credit show work, not just answer.

D Accuracy of bimodal predictor on Bl after warmup:
D Accuracy of bimodal predictor on B2 after warmup:
D Accuracy of local predictor on B2 after warmup:

D Warmup time of local predictor on B2:

[ ] Minimum local history size for 100% accuracy of local predictor on B2 (without ignoring B1) (show
work):

D Accuracy of global predictor on B2 after warmup:

D Warmup time of global predictor on B2 (explain):



(b) Consider the execution of the code fragment below on a system using branch prediction. The value of ¢
used in the switch statement is random, uniformly distributed over a to z, and outcomes are independent
(like a 26-sided die). The branch implementing the if ( x < 5 ) statement, which will be called the if
branch, is taken 50% of the time.

int ¢ = getchar(); // Unpredictable
switch (c) {

case ’a’: x = 3; j++; break;

case ’b’: x 7; break;

case ’z’: x = 1; i++; break;
}
if ( x < 5 ) foo(); else bar();

As shown below, the switch construct is implemented using a dispatch table and a jr, and other jumps.
The switch construct itself and the case blocks use no branches.

# Part of code implementing switch construct.

# Value in register $t1 has been computed using variable c.

lw $t0, 0($tl) # Load the address of the case statement corresponding to c.
jr $t0 # Jump to case statement.

nop
# Case ’a’

addi $t5, $0, 3 # x = 3;

j endswitch

addi $t7, $t7, 1 # j++

The predictors covered in class would all achieve just a 50% prediction accuracy on the if branch.

Modify one of the predictors used in class so that it does better than 50% on the if branch. Hint: Note that x
is assigned a different constant in each case statement. A correct solution requires just a small modification
of one of the predictors shown in class.

D Briefly explain the idea behind your predictor.

D Draw a diagram of the predictor.

D Show tables such as BHT and PHT.



Problem 3: (20 pts) The diagram below is for a 256-MiB (22%-character) set-associative cache with a line

size of 64 characters on a system with the usual 8-bit characters.

(a) Answer the following, formule are fine as long as they consist of grade-time constants.

D Fill in the blanks in the diagram.
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D Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address: ‘

D Associativity:

[ ] Memory Needed to Implement (Indicate Unit!!):

D Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address: ‘




Problem 3, continued:

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

D What is the hit ratio running the code below? Explain

double sum = 0.0;

long *a = 0x2000000; // sizeof(long) = 8 characters.
int i;

int ILIMIT = 1 << 10;  // = 210

for(i=0; i<ILIMIT; i++) sum += a[ i ];

(c) Consider a 1 MiB (220 byte) direct mapped cache with a line size of 256 characters (not the same as
the one from parts a and b) for a system with a 32-bit address space. Suppose this cache has the following
defect: a particular bit position in the tag comparison unit will match even if the tags differ. That is, if the
bad bit position were 2 then tags 0x5 and 0x1 would match. Other cache hardware functions correctly. The
cache is write through and write around.

D Complete the program below so that it finds the bad bit position in a small amount of time and assigns
it to badbit.

D For maximum partial credit briefly describe your strategy.
e The cache is empty when the program starts.

e Assume that any address can be read or written.

char *a = 0x1000;
int bad_bit = -1; // At end should be set to position of bad tag bit.



Problem 4: Answer each question below.
(a) (6 pts) A trap instruction is sort of like a procedure call (e.g., jal) to the operating system.

D Describe a difference between a trap and jal in how the target address is specified.

D Describe another difference between a trap and a jal.

(b) (6 pts) A log (logarithm) instruction is to be added to an ISA. Group E wants to define the log
instruction as producing the IEEE 754 double representation that is closest to the exact result. Group A
would define log as producing any result within a certain number of bits of the exact result. Group A argues
that the precision of an exact result is not needed and their approximate result is sufficient. Group E agrees
with this, they want an exact result for other reasons. Hint: Think about the reasons for separating ISA and
implementation.

D Why might group A want an approximate result?

D Why might group E want an exact result?



(¢) (6 pts) Consider two scalar MIPS implementations, implementation A is similar to the one covered in
class with the familiar stages IF ID EX ME WB while implementation B has stages IF I1 I2 I3 I4 EX ME
WB. The two implementations run at the same clock frequency and are similar in other ways.

D Explain why implementation A does not need a branch predictor, or at best would only gain a small

amount of performance.

D Explain why a branch predictor would help implementation B much more than implementation A.

D Consider the performance of implementation A and implementation B when branch prediction is perfect
for both. Which (if any) is faster, and by how much? Explain, state any assumptions made.



(d) (6 pts) The code below executes on a two-way superscalar dynamically scheduled machine similar to the
one presented in class. The sub instruction reads the value of r1 from the register file in cycle 10, xori
writes a value for r1 in cycle 6 and 1w writes a value for r1 in cycle 9.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
1w r1, 0(r2) IF ID Q RR EA ME WB C

add r3, r9, ri1 IF ID Q RR EX WB C

or r6, r3, r8 IF ID Q RR EX WB C
xori rl, r4, 5 IF ID Q RR EX WB C
sub rb5, ri1, r3 IF ID Q RR EX WB C

D Briefly explain why the code runs correctly despite the fact that 1w writes after xori.

(€) (6 pts) Modern VLIW ISAs are designed with modern implementations in mind, unlike decades old RISC
ISAs.

D Show the contents of a typical VLIW bundle.

D Provide an example of a VLIW feature that’s designed to make implementation easier. Explain how it
does so.
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