
Name

Computer Architecture

EE 4720

Midterm Examination

Wednesday, 28 March 2007, 11:40–12:30 CDT

Alias

Problem 1 (40 pts)

Problem 2 (30 pts)

Problem 3 (30 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: In the MIPS implementation below some wires are labeled with cycle numbers and values that
will then be present. For example, c1:15 indicates that at cycle 1 the wire will hold a 15. Other wires
are labeled just with cycle numbers, indicating that the wire is used at that cycle. If a value on any labeled
wire is changed the code would execute incorrectly. Note that the last instruction and the address of two
instructions have been provided. [40 pts]

Finish a program consistent with these labels.

All register numbers and immediate values can be determined.

Be sure to fill the three blocks marked Fill In.

format

immed

IR

Addr
25:21

20:16

IF
 ID

EX
 WB
ME

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst
Decode

dest. reg

NPC

=

30
 2

"0"

+

15:0

25:0

29:26

29:0

0
1

15:0

c1:15

c4:12

c1:14

Fill In

c3:___

c5:0x5e1f

c2:6

c3

c3

Fill In

c6:___

c4:0x1006

Fill In

c7:___

c4:19

c6

c5

c3:0

Cycle: 0 1 2 3 4 5 6 7 8

0x1000 IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

0x1030 sb r17, 3(r4) IF ID EX ME WB

Cycle: 0 1 2 3 4 5 6 7 8

2

Problem 2: Answer each question below.

(a) Show the encoding of the MIPS xor instruction below. In particular, show the name of each field in the
encoded instruction, the fields’ bit positions, and the fields’ values. If you don’t know the value of a field
(there’s one or two you’re not expected to know) make up a value and label it “made up.” Hint: It is not

cheating to look at the diagram for Problem 1.

xor r5, r7, r10

[10 pts] Encoding showing field names, bit positions, and values.

(b) Unlike some other benchmark suites, in SPECcpu the tester compiles the benchmarks (rather than having
SPEC provide the benchmarks already compiled). [10 pts]

How does this difference make SPECcpu valuable to those in the area of computer architecture?

Why might this difference make SPECcpu less valuable to those looking for the fastest computer to run their
favorite game?

(c) A company is considering adding a BCD data type to their new ISA. An analysis of a suite of Cobol
programs, widely used by their customers, shows that the ISA’s BCD data type would be extensively used.
[10 pts]

What more does the company need to know to make the decision?

3

Problem 3: Answer each question below.

(a) The MIPS code below loads a character from memory and places it in bit positions 15:8 of register r3.
[10 pts]

lbu r1, 0(r2) # Note: r2 can be any address.

sll r1, r1, 8

and r3, r3, r4 # r4 = 0xffff00ff

or r3, r3, r1

Explain how this code is similar to, and differs from, the operation performed by lwl and lwr (from Home-
work 1).

Given that MIPS already has lwl and lwr is it worthwhile adding an instruction that performs the same
operation as the code above? Explain, stating any necessary assumptions or made-up data.

4

(b) The first code fragment below, standard MIPS, uses a slt to perform a comparison for a branch. The
second uses a proposed MIPS branch instruction that does the comparison itself and as a result the target is
fetched one cycle sooner. The first execution is on sImp, an implementation of standard MIPS, the second
execution is on bImp, an implementation of the proposed MIPS; bImp includes blt but is otherwise identical
to sImp. [10 pts]

Standard MIPS Cyc: 0 1 2 3 4 5 6 7

slt r1, r2, r3 IF ID EX ME WB

bne r1, r0, TARG IF ID EX ME WB

nop IF ID EX ME WB

TARG: xor r4, r5, r6 IF ID EX ME WB

Proposed MIPS Cyc: 0 1 2 3 4 5 6 7

blt r2, r3, TARG IF ID EX ME WB

nop IF ID EX ME WB

TARG: xor r4, r5, r6 IF ID EX ME WB

Why might the clock frequency of bImp be lower than sImp?

How does knowing the percentage of branches in a program help determine if bImp can run the program
faster than sImp (when compiled for the respective implementation)?

5

(c) All a compiler needs to know about the target (the implementation being compiled for) is its ISA.
However, if the compiler also knows the implementation it can produce faster code. [10 pts]

What’s wrong with the following statement: If the compiler also knows the target implementation it can

make better register assignment decisions since it knows the exact number of registers available.

How can the compiler produce better code knowing operation latencies, such as the time needed for a mul

instruction?

6

