
LSU EE 4720 Homework 4 Due: 4 December 2006

Problem 1: The floating point pipeline in the MIPS implementation illustrated below must some-
times stall instructions to avoid the WF structural hazard. The WF structural hazard could be
avoided by requiring all instructions that use WF to go through the same number of stages. Note
that instructions that use WB all pass through five stages, even though some instructions, such as
xor, could write back earlier.

Redesign the illustrated implementation so that the WF structural hazard is eliminated by
having WF instructions (consider add.d, sub.d, mul.d, and lwc1) all pass through the same
number of stages. The functional units themselves shouldn’t change (still six multiply steps and
four add steps) but their positions might change.

(a) Show the possibly relocated functional units and their connections. Don’t forget connections
for the lwc1 instruction.

(b) Show any changes to the logic generating the fd, we, and xw signals. Note: The original

assignment did not ask for xw changes.

(c) Show bypass paths needed to avoid stalls between any pair of floating point instructions men-
tioned above.

format

immed


IR


Addr

25:21


20:16


IF
 EX
 WB
MEM


rsv


rtv


IMM


NPC


ALU
Addr


Data


Data


Addr
 D In


+1


PC


Mem

Port


Addr


Data

Out


Addr

Data

In


Mem

Port


Data

Out
rtv


ALU


MD


dst
 dst
 dst
Decode

dest. reg


NPC
Int Reg File


FP Reg File


fd
fd


WF


Addr
 Data


D In
WE


Addr


Addr


Data


fsv


ftv


15:11


20:16
 M6


we
 we


Decode

dest. reg


ID


A4


fd


we


fd


we


A3
A2
A1


M3
 M4
 M5


xw


fd


we


xw


fd


we


xw


M2
M

1


xw
 xw


fd


we


uses FP mul


uses FP add


FP load


Stall

ID


"0"

"2"

"1"


30
 2

"0"


+
 15:0
 29:0


0

1


2


http://www.ece.lsu.edu/ee4720/


Problem 2: Consider the changes to avoid structural hazard stalls from the previous problem.
Provide an argument, either for making the changes and or against making the changes. For your
argument use whatever cost and performance estimates can be made from the previous problem.
Add to that the results of fictitious code analysis experiments and alternative ways of using silicon
area to improve performance.

The code analysis experiments might look at the dynamic instruction stream of selected pro-
grams. For these experiments explain what programs were used and what you looked for in the
instruction stream. Make up results to bolster your argument.

For the alternative ways of using silicon area, consider other ways of avoiding the structural
hazard stalls, or other ways of improving performance. This does not have to be very detailed, but
it must be specific. (For example, “use the silicon area for pipeline improvement” is too vague.)

The argument should be about a page and built on a few specific elements, rather than mean-
dering long-winded generalities.

Problem 3: In the previous problem structural hazards were avoided by having all WF instructions
pass through the same number of stages. If both WB and WF instructions passed through the
same number of stages then, were it not for stores, it would easily be possible for floating-point
instructions to raise precise exceptions without added stalls (even if exceptions could not be detected
until M6).

(a) For this part, ignore store instructions. Explain why having all instructions pass through the
same number of stages makes it easier to implement precise exceptions (without added stalls, etc.)
for floating point instructions.

(b) For this part, include store instructions. Explain how store instructions preclude precise excep-
tions for the implementation outlined above, or at least for a simple one.

(c) For this part, include store instructions. Do something about stores so that the all-instructions-
use-the-same-number-of-stages implementation can provide precise exceptions to floating point in-
structions. It is okay if the modified implementation adds stalls around loads and stores. A good
solution balances cost with performance.

If your solution is costly say so and justify it. If your solution is low cost but lowers performance
say so and show the execution of code samples that encounter stalls.


