
LSU EE 4720 Homework 3 Solution Due: 20 October 2006

Problem 1: Show the changes to the MIPS implementation below needed to implement the SPARC V8
instructions shown in the sub-problems. (See the SPARC Architecture Manual linked to the course references
page for a description of SPARC instructions.) Do not show control logic changes or additions. For this
problem assume that SPARC has 32 general-purpose registers, just like MIPS. (In reality there are 16n,
n ≥ 4 general-purpose registers organized into windows. An integer instruction sees only 32 of these but
using save and restore instructions a program can replace the values of 16 of them, the feature is intended
for procedure calls and returns. To satisfy curiosity, see the description of register windows in the ISA
manual.)

format

immed


IR


Addr
18:14


4:0


IF


ID

EX
 WB
ME


rs1v


rs2v


IMM


PC


ALU
Addr


Data


Data


Addr
 D In


+1


PC


Mem

Port


Addr


Data

Out


Addr

Data

In


Mem

Port


Data

Out
rdv


ALU


MD


dst
 dst
 dst

Decode


dest. regs


PC


30
 2

"0"


+

21:0


25:0


29:26


29:0


0
1


12:0


cc


Branch

control

logic


=


Part (a),

ALU


Addr
 Data
29:25
 rdv


Part (b),

store


Part (c), subcc, branch


ccv

ccv


cc

we


cw
 cw
 cw


Part (c),

subcc,

branch


Register for CC bits; 
we
 is write enable.


For solution can use larger version on next page.

(a) Show the changes for the following instructions. The only changes needed for these are to bit ranges in
the ID stage.

add %g1, %g2, %g3

sub %g4, 5, %g6

Changes shown in blue in the diagram. The instruction bits used for the two existing read ports on the ID-stage register file
changed to 18:14 and 4:0, so that the SPARC rs1 and rs2 registers would be retrieved. The bits in to the ID-stage format-immed
logic changed to 12:0, reflecting the SPARC immediate field.

(b) Show the changes needed for the store instruction below. This will require more than changing bit ranges.

st %g3, [%g1+%g2]

Changes shown in green in the diagram. The store instruction has three source operands so a third read port added to the
register file. In EX, the MUX leading to the ME-stage Data In port now gets its input from rdv (the new register read port value).

http://www.ece.lsu.edu/ee4720/


(c) Show the changes needed to implement the instructions below. The alert student will have noticed the
ALU has a new output labeled cc. That output has condition code values taken from the result of the ALU
operation.

• Don’t forget the changes needed for the branch target.

• The changes should work correctly whether or not the branch immediately follows the CC instruction.

• Cross out the comparison unit if it’s no longer needed.

subcc %g1, %g2, %g3

bge TARG

Changes shown in purple in the diagram. The cc instructions write the condition-code register, which is like any other register
and so is placed in the ID stage. The CC value is computed by the cc output of the ALU, and that is carried along the pipeline in
new CC pipeline latches to the WB stage where a new CC register is written. That new register has a write-enable (we) input so
that only cc instructions (such as subcc) will write it. The output of the cc register connects to the branch control logic, a cc value
is bypassed from the EX stage so that a branch immediately after a cc instruction (as in the example above) doesn’t have to stall.

SPARC branch instruction targets are computed as a displacement from PC rather than NPC, so IF/ID latch changed. The
ID-stage branch target adder lower input changed to reflect the position and size of the displacement field in SPARC instructions,
bits 21:0.

Grading Notes: Some submitted solutions have the cc register bits compared to the comp field in the branch instruction.
That won’t work because the comp field does not specify exactly what the cc bits should be. For example, be (branch equal to zero)
just checks if the Z bit is set.

Some submitted solutions show the CC register being written in the instruction’s EX stage. That won’t work because the
instruction may be squashed after EX (and so it would not easily be possible to recover the old cc value). Given what’s been covered
so far it may seem like a squash won’t happen to an instruction that reaches EX, but that will change when we cover exceptions.


