
LSU EE 4720 Homework 4 Solution Due: 17 April 2006

Problem 1: The code below executes on the illustrated MIPS implementation. The FP pipeline is fully
bypassed but the bypass connections are not shown.

format

immed

IR

Addr

25:21

20:16

IF
 EX
 WB
MEM

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst
Decode

dest. reg

NPC
Int Reg File

FP Reg File

fd
fd

WF

Addr
 Data

D In
WE

Addr

Addr

Data

fsv

ftv

15:11

20:16
 M6

we
 we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3
A2
A1

M3
 M4
 M5

xw

fd

we

xw

fd

we

xw

M2
M

1

xw
 xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"

"2"

"1"

30
 2

"0"

+
 15:0
 29:0

0

1

2

(a) Show a pipeline execution diagram. Solution shown below. The stall is for the dependency through register f2.

(b) Determine the CPI for a large number of iterations.
Because the second and third iterations start with the pipeline in the same state, the time for the second iteration can be used

as a basis for computing CPI. The second iteration starts in cycle 3 (first instruction in IF), the third iteration starts in cycle 9, each

iteration is 3 instructions to the CPI is 9−3

3
= 2 .

(c) Add exactly the bypass connections that are needed.
Solution shown in the diagram above. Added bypass connection shown in blue bold.

See next page for solution to first part.

http://www.ece.lsu.edu/ee4720/

Solution to Problem 1a

LOOP:

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.d f2, f2, f4 IF ID M1 M2 M3 M4 M5 M6 WF

bneq r1,0 LOOP IF ID EX ME WB

addi r1, r1, -1 IF ID EX ME WB

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.d f2, f2, f4 IF ID -------> M1 M2 M3 M4 M5 M6 WF

bneq r1,0 LOOP IF -------> ID EX ME WB

addi r1, r1, -1 IF ID EX ME WB

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mul.d f2, f2, f4 IF ...

Problem 2: Due to a coffee spill the implementation below has a flaw: The inputs to the M2-stage XW
mux have been reversed, the top input should be a 2 but is a 1, and the lower input should be a 1 but is
a 2. There are no other flaws, in particular the control signal for the mux has been designed for a 2 at the
upper input and a 1 at the lower input.

You are stranded alone on an island with this flawed implementation and to get off the island you need
the result computed by the code below. The code was written for a normal MIPS implementation and will
not compute the correct result on the flawed one. Re-write it so that it computes the correct result on the
flawed implementation. (The solution must use the FP arithmetic units, do not simply implement IEEE 754
floating point using integer instructions.)

format

immed

IR

Addr

25:21

20:16

IF
 EX
 WB
MEM

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst
Decode

dest. reg

NPC
Int Reg File

FP Reg File

fd
fd

WF

Addr
 Data

D In
WE

Addr

Addr

Data

fsv

ftv

15:11

20:16
 M6

we
 we

Decode

dest. reg

ID

A4

fd

we

fd

we

A3
A2
A1

M3
 M4
 M5

xw

fd

we

xw

fd

we

xw

M2
M

1

xw
 xw

fd

we

uses FP mul

uses FP add

FP load

Stall

ID

"0"

"2"

"1"

30
 2

"0"

+
 15:0
 29:0

0

1

2

Coffee stain

obscuring

correct inputs.

"2"

"1"

Wrong inputs

used to build

hardware.

Bypass from here.

Solution on next page.

The problem with the implementation above is that when an add.d is in WF the mux will send the output of the FP multiply
unit, not the FP add unit, to the register file. When a mul.d reaches WF the mux will choose the FP add unit for writeback.

Simply substituting a mul.d for the add.d won’t work because the add unit would have gotten the wrong inputs. This
happens in the example below where in cycle 8 the output of the adder, not the multiplier, is written back. The input values for the
adder are determined by the instruction that was in ID in cycle 3, which is not mul.d.

Cycle 0 1 2 3 4 5 6 7 8

mul.d f2, f4, f6 IF ID M1 M2 M3 M4 M5 M6 WF

ID A1 A2 A3 A4

To get the correct input to the add functional unit a second mul.d needs to be added. Suppose our goal is to execute add.d
f2, f4, f6. Then start with a mul.d with the desired destination register but using dummy source registers. (See the code
below.) Follow that with a nop and then another mul.d having a dummy destination but the desired source registers; when this
second multiply reaches M1 its source operands will go to both the multiply unit (M1) and the add unit (A1). The first multiply will
write the output of that add unit to the register file and so it will be as though add.d f2, f4, f6 were executed.

Code below effectively executes add.d f2, f4, f6

Cycle 0 1 2 3 4 5 6 7 8 9 10

mul.d f2, f30, f30 IF ID M1 M2 M3 M4 M5 M6 WF # Dummy sources.

nop IF ID EX ME WB

mul.d f30, f4, f6 IF ID M1 M2 M3 M4 M5 M6 WF # Dummy destination

To get the original code below running on the faulty computer replace the add.d with a pair of multiplies. The only additional
complication is that a source and destination register match, and that would create a confounding dependence stall if the exact
technique above were used. Instead, the loop is unrolled so that one iteration of the re-written loop does the work of two iterations
in the original loop. The first half-iteration writes f12 instead of f2, the second half-iteration reads f12 instead of f2.

The timing for the first iteration is shown. In the second iteration the first multiply should stall. The code is written assuming
an even number of iterations in the original loop.

Original code to be executed on the faulty computer.

LOOP:

add.d f2, f2, f4

bneq r1,0 LOOP

addi r1, r1, -1

Modified code that produces the same result as the code above.

Dummy registers: F26, F28, F30

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LOOP:

mul.d f12, f2, F30 IF ID M1 M2 M3 M4 M5 M6 WF # Dummy sources, but f2 needed for stall

nop IF ID EX ME WB

mul.d F26, f2, f4 IF ID M1 M2 M3 M4 M5 M6 WF # Dummy dest.

mul.d f2, f12, F30 IF ID -------> M1 M2 M3 M4 M5 M6 WF # Dummy source.

nop IF -------> ID EX ME WB

mul.d F28, f12, f4 IF ID M1 M2 M3 M4 M5 M6 WF # Dummy dest.

beq r1, 0 LOOP IF ID EX ME WB

addi r1, r2, -2 IF ID EX ME WB

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

