
LSU EE 4720 Homework 2 Solution Due: 13 March 2006

Problem 1: The code fragment below runs on the illustrated implementation. Assume the branch is always
taken.

(a) Show a pipeline execution diagram covering execution to the beginning of the third iteration of the loop.
See below.

(b) What is the CPI for a large number of iterations?
Hint: Pay close attention to dependencies and carefully add the stalls to handle them; also pay close

attention to the timing of the branch. Work from the illustrated implementation, do not adapt the solution

from a similar past assignment, that would be like preparing for a 10 km run by driving around the jogging

trail.

An iteration has four instructions. The first iteration takes 10 − 0 = 10 cycles as does the second iteration: 20 − 10 = 10
cycles. Both the second and third iterations start with the pipeline in the same state (lw in IF, add in ME, bneq in WB) and so the

third iteration will be identical as will every subsequent iteration and so the CPI is 10

4
.

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LOOP:

lw $s0, 0($s1) IF ID EX ME WB

addi $s3, $s0, 4 IF ID ----> EX ME WB

bneq $s3, $0 LOOP IF ----> ID ----> EX ME WB

add $s1, $s1, $s2 IF ----> ID EX ME WB

xor $t0, $t1, $t2 IF IDx

or $t3, $t4, $t5 IFx

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

lw $s0, 0($s1) IF ID EX ME WB

addi $s3, $s0, 4 IF ID ----> EX ME WB

bneq $s3, $0 LOOP IF ----> ID ----> EX ME WB

add $s1, $s1, $s2 IF ----> ID EX ME WB

xor $t0, $t1, $t2 IF IDx

or $t3, $t4, $t5 IFx

lw $s0, 0($s1) IF ID ----> ...

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

format

immed

IR

Addr

25:21

20:16

IR

IF
 ID
 EX
 WB
MEM

IR
 IR

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+4

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst
Decode

dest. reg

=

=0

<0

E

Z

N

NPC

http://www.ece.lsu.edu/ee4720/

Problem 2: The code fragment below (the same as the one above) runs on the illustrated implementation
(different than the one above—and better!). Assume the branch is always taken.

(a) Show a pipeline execution diagram covering execution to the beginning of the third iteration of the loop.
See below. Note that there is no bypass for the branch condition.

(b) What is the CPI for a large number of iterations?

An iteration is 14 − 7 = 7 cycles, the CPI is 7

4
.

(c) An A points to a wire on the illustration. On the pipeline execution diagram show the value of that
wire in every cycle that the corresponding stage holds a “live” instruction.

See diagram. The A points to the integer register number to write. Both the value, and for convenience, the register name
are shown. Note that the branch specifies register 0 as a destination, because it does not write any real register.

(d) A B points to a wire on the illustration. On the pipeline execution diagram add a row labeled B, and
on it place an X in a cycle if the value on the wire can be changed without changing the way the program
executes.

Through B the rs register value from the register file goes to the ALU. It is only used if the instruction uses the rs register
value and if that value is not bypassed. A lower-case ex (x) is placed in positions where there is no instruction or if the instruction
does not use the rs register value (bypassed or note). An upper-case ex (X) is placed in positions where the instruction uses a bypassed
rs value (the value from the register file is outdated).

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LOOP:

A: 16 19 0 17 16 19 0 17 16

s0 s3 r0 s1 s0 s3 r0 s1 s0

B: x x x X x x x X x X x x x X...

lw $s0, 0($s1) IF ID EX ME WB

addi $s3, $s0, 4 IF ID -> EX ME WB

bneq $s3, $0 LOOP IF -> ID ----> EX ME WB

add $s1, $s1, $s2 IF ----> ID EX ME WB

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lw $s0, 0($s1) IF ID EX ME WB

addi $s3, $s0, 4 IF ID -> EX ME WB

bneq $s3, $0 LOOP IF -> ID ----> EX ME WB

add $s1, $s1, $s2 IF ----> ID EX ME WB

lw $s0, 0($s1) IF ID EX ME WB

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

format

immed

IR

Addr
25:21

20:16

IF

ID
 EX
 WB
MEM

rsv

rtv

IMM

NPC

ALU
Addr

Data

Data

Addr
 D In

+1

PC

Mem

Port

Addr

Data

Out

Addr

Data

In

Mem

Port

Data

Out
rtv

ALU

MD

dst
 dst
 dst
Decode

dest. reg

NPC

=

30
 2

"0"

+

15:0

25:0

29:26

29:0

0
1

A

B

