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Problem 1: The execution of code on a dynamically scheduled scalar MIPS implementation using Method
3 (the only one covered in class) is shown below. Beneath the diagram are signal labels, for example, ID:dst.
(25 pts)

(a) On the next page show the values of the signals at the cycles they are used.

• Some values are shown, they are needed to determine other values.

• All values can be determined.

• Ignore the distinction between integer and FP registers.

• The free list contents at cycle zero is shown on the lower right-hand side of the figure on the next
page.

Solution appears on next page in blue. The values of ID:rsPR in cycles 1 and 3 (appearing in the problem, not just the solution) tell
us that register f2 is initially mapped to physical register 56, f4 is initially mapped to physical register 63, r5 is initially mapped
to physical register 30, and r6 is initially mapped to physical register 54.

Because they are not written in the code fragment the mappings for f4 and r6 don’t change. Registers f2 and r5 get new mappings,
the physical registers are taken from the free list.

The ID:dst row shows an “r” or “f” in addition to the register number. In a real implementation there might be separate maps for
integer and floating point registers. If not, a bit might be used to indicate whether the register is floating point.
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Tables for answer on next page.
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Problem 1, continued:
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Free list at cycle zero: 47, 49, 61, 32, 50, 46, 73, 60, 48, 95

LOOP: # First Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LOOP: # Second Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ID:rsPR 56 30 30 47 49 49

ID:rtPR 63 54 63 54

ID:dst f2 r5 f2 r5

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ID:dstPR 47 49 61 32

ID:incmb 56 30 47 49

RR:rsPR 56 30 30 47 49 49

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RR:rtPR 63 54 63 54

WB:dstPR 49 47 32 61

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C:incmb 56 30 47 49

C:dstPR 47 49 61 32

C:dst f2 r5 f2 r5

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Problem 1, continued: The diagram below is for the same code on the same system as the previous part,
except now three iterations are shown.
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LOOP: # First Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LOOP: # Second Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

# Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LOOP: # Third Iteration

add.s f2, f2, f4 IF ID Q RR A1 A2 A3 A4 WB C

bgtz r5 LOOP IF ID Q RR B WB C

sub r5, r5, r6 IF ID Q RR EX WB C

(b) What is the CPI for a large number of iterations? Hint: It’s not 1.

�CPI?

The quick, common sense way to solve this problem is to note that each add.s will start right after the completion of the add.s
in the previous iteration and the add.s will commit in the cycle after WB (since the sub and bgtz finish much faster), and so

execution will proceed at a rate of four cycles per iteration or a CPI of 4

3
.

The regular way to determine CPI is to find a repeating pattern. Normally, we look for two cycles in which the first instruction of
the loop is in IF and in which the state of the system is identical. That doesn’t happen in the three iterations appearing above, and
it won’t happen for a while because at each iteration there are more instructions in flight.

An alternative way to find CPI is to look at the state of the system when the first instruction is in commit. In each case add.s in
the following iteration is in A2. Assuming nothing interferes with the add.s in the next iteration starting execution on time, the
processor will sustain a commit rate of four cycles per iteration. (Note that with the regular technique there is no need to make such
assumptions.)

Therefore CPI = 17−13

3
= 4

3
.
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Problem 1, continued:

(c) Suppose the ROB can hold 256 entries and there are an unlimited number of physical registers. Assuming
a very large number of iterations, at about what cycle will fetch stall?

�Fetch will stall at cycle ≈

Instructions are being fetched at 1 instruction per cycle and committed at a rate of 3

4
IPC. Let n(c) denote the number of instructions

in the reorder buffer at cycle c, then n(c) = c −
3

4
(c − 9) for c ≥ 9. (Note that no instructions are committed until cycle 9.)

Solving for c yields c = 4n(c) − 27, substituting n(c) → 256 gives c = 997 cycles .

(d) Would the code above run faster on a four-way superscalar dynamically scheduled system with the same
clock frequency and pipeline depth? Explain.

�Circle One: Faster Not Faster .

�Because

Execution above is limited by the execution of the add.s. A superscalar system would fetch instructions faster but since the next
add.s starts as soon as the previous one finishes, that won’t help.
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Problem 2: The code fragments below run on three systems which are identical except for the branch
predictor: One uses a bimodal predictor with a 214-entry BHT, one uses a local predictor with an 8-outcome
local history and a 214-entry BHT, and one uses a global predictor with an 8-outcome global history. (25 pts)

(a) Provide the information requested below.

• All accuracies are after warmup.

• For the warmup time show the approximate number of times the predicted branch needs to be
executed before the predictor reaches its warmup accuracy. Assume the 2-bit counters start out
at 0 or 3, whichever is worse.

BIG:addi r3, r0, 3

LP: bne r3, r0 LP # Iterates four times.

addi r3, r3, -1

lw r1,0(r2)

C2: beq r1, 0 SK # T N T T N T N T T N T N T T N T N T T N ...

nop

nop

SK: j BIG

addi r1, r1, 4

�Bimodal: accuracy on C2: 60%

�Bimodal: warmup time on C2: 8 executions

�Local: accuracy of C2: 100%

�Local: warmup time on C2: ≈ 8 + 2 × 5 = 18 executions

�Local: smallest history size needed for 100% accuracy on C2: 5 (If LP ignored would be 4 outcomes.)

�Global: accuracy on C2: 80%

�Global: warmup time on C2: ≈ 1 + 6 + 2 = 9 executions

�Global: smallest history size needed for 100% accuracy on C2: 4 × 5 = 20

See next page for discussion of solution.
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Problem 2, continued:

The code below is repeated from the previous page with stuff added to show how to compute bimodal prediction accuracy.

BIG:addi r3, r0, 3

LP: bne r3, r0 LP # Iterates four times.

addi r3, r3, -1

lw r1,0(r2)

# Comments show solution work for bimodal accuracy.

# Execution Num # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C2: beq r1, 0 SK # T N T T N T N T T N T N T T N ...

# Counter: 0 1 0 1 2 1 2 1 2 3 2 3 2 3 3 2 ...

# Prediction: N N N N T N T N T T T T T T T T

# Correct x x x x x x x x x x

nop

nop

SK: j BIG

addi r1, r1, 4

# Global history, C2 outcomes in upper case, LP outcomes in lowercase.

# T tttn N tttn T tttn T tttn N tttn T tttn N tttn T tttn T tttn N tttn ...

General: Branch C2 has an outcome pattern of length 5: TNTTN.

A branch is warmed up when the 2-bit counters it uses reach the correct value. Bimodal is easiest since it uses just one counter. If
the branch is highly biased it will take two executions to warm up a counter. Branch C2 is biased, but not highly so it will take more.
More on bimodal further below. For the other predictors you need to compute how many counters they use (by finding the number
of local or global history patterns used to predict them). See the discussion of those predictors, below.

Bimodal: The code above shows the 2-bit counter used by the bimodal predictor to predict branch C2. A repeating pattern is
established after execution 9 (see the numbers in the diagram), in which the counter value is 2, it is also 2 after 14, and so the pattern
will repeat. With 3 out of 5 correct the accuracy is 60%.

Bimodal just uses one counter. Since C2 is not highly biased it will take more than 2 executions to warm it up, from the diagram
above it can be seen that it takes about 8.

Local: The 5-outcome pattern easily fits in the 8-outcome history so prediction accuracy is 100%. After 8 executions (the length of
the local history) there will be 5 different local histories for C2: TNTTNTNT, NTTNTNTT, TTNTNTTN, TNTNTTNT, NTNTTNTN. At
worst, each will take two executions to warm up, so the warmup time is 8 + 5 × 2 = 18 executions.

If ignoring the LP branch the smallest history size would be 4. Two would not be enough because NT can be followed by an N or T;
three is not enough because TNT can be followed by an N or T. If the LP branch is considered then 4 is not enough because patterns
TTNT and TNTT occur with both branches, LP and C2, and the subsequent outcomes differ. Five outcomes are sufficient.

Global: The first step in solving this is determining the global histories seen when making the prediction. Between each outcome of
C2 there are four executions of LP (SK doesn’t count because it’s a jump, not a branch). The global history is shown in the bottom
of the code above, the history used when predicting C2 is the eight outcomes just before an upper-case letter, for example, ttn N

tttn and ttn T tttn. In fact, these are the only two distinct global histories see when predicting C2. Pattern ttn N tttn is
seen twice, in both cases before a taken branch, so its predictions will always be correct. Pattern ttn T tttn is seen three times,
once before a T outcome and twice before an N outcome, and so after warmup it will predict N and be correct 2

3
of the time. The

overall prediction accuracy is 1

5

(

2 × 1 + 3 ×
2

3

)

= 4

5
.

A hand analysis shows that the counter for ttn T tttn warms up in 6 executions (assuming a worst-case start value of 3), being
highly biased, the counter for ttn N tttn warms up in 2 executions. The patterns above will not be seen until after the first
iteration, so the total warmup time is 1 + 6 + 2 = 9 executions.

For 100% accuracy the global history must hold four outcomes of C2 (see the discussion for the local predictor). It takes 5 global
outcomes to capture one C2 outcome, so for four C2 outcomes the global history length must be 20 outcomes.
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Problem 2, continued:

(b) The code below is similar to the code on the previous page except the four-iteration loop has been
replaced by two random branches. Each random branch will be taken with probability .5 and the outcome
is independent of everything, including the other random branch.

BIG:lb r3, 0(r4)

beq r3, r0 S2 # Random.

lb r3, 1(r4)

S2: beq r3, r0 S3 # Random.

addi r4, r4, 2

S3: nop

lw r1,0(r2)

C2: beq r1, 0 SK # T N T T N T N T T N T N T T N T N T T N ...

nop

nop

SK: j BIG

addi r1, r1, 4

# Solution - Global History.

# Upper case is C2, r is first random branch, s is second random branch;

# r and s can be either taken or not-taken.

# T r s N r s T r s T r s N r s r s T r s N r s T r s T r s N r s ..

�Global: accuracy on C2: 80%

�Explain using GHR values.

�Global: warmup time on C2: ≈ 3 + 2 × 3 × 26 executions

�Explain using GHR values.

�Global: smallest history size needed for 100% accuracy on C2: 4 × 3 = 12

�Explain using GHR values.

This loop brings good news and bad news. The good news is that an eight-outcome global history will hold two C2 outcomes. The
bad news is that it doesn’t help, and warmup time is worse.

Accuracy: The global history patterns when predicting C2 are: rsTrsTrs, rsNrsTrs, and rsTrsNrs, where each r and s can
be either taken or not taken. A pattern of the form rsTrsTrs occurs once and is always followed by an N so it predicts at 100%.
Form rsNrsTrs occurs twice and is followed by an N or T, its accuracy will be discussed further below. Form rsTrsNrs occurs
twice and is always followed by a T, so it predicts at 100%.

As the alert reader guessed, rsTrsNrs is being called a “form” because it represents 26 = 64 patterns, one for each distinct
outcome of the random branches. For forms rsTrsNrs and rsTrsTrs the only impact of this diversity is increased warmup time.
Each pattern still takes at worst 2 outcomes to warm up, but each form represents 64 patterns.

For pattern rsNrsTrs there is also an impact on accuracy. If r and s were always taken, then the counter for rsNrsTrs would
see outcomes T N T N T ..., and so the prediction accuracy would be 50% if the initial value of the counter were 0, 2, or 3; if
the counter were 1 the accuracy would be 0%. Since r and s are random each counter sees a random subset of T N T N T N,
since that subset is balanced between T’s and N’s, it is equally likely that the counters predict taken or not taken. (Actually, when
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the next C2 outcome is T there is a tiny bias towards predicting N, and vise versa.) So the prediction is random, uniform (between
T and N), so the prediction accuracy for form rsNrsTrs will be 50%. The overall prediction accuracy is then still 80%.

As stated above, the worst-case warmup time for the highly biased patterns is 2 outcomes each. Assume the same is true for
rsNrsTrs, though it will actually be larger. If the random branches uncharacteristically did not repeat a pattern, the total warmup
time for all three forms would be 3 + 3 × 26 × 2, but that’s unlikely. Since branches are random there is no precise warmup time,
instead the solution will be to find the number of executions at which the probability that the 2-bit counter used for a prediction is
warmed up is .05. Let x denote the number of times form rsNrsTrs appears, and suppose without loss of generality that we are
predicting ttNttTtt (the x + 1 time the form appears). The probability that ttNttTtt is seen a particular time is 1

64
, the

probability it’s not seen a particular time is 1− 1

64
and the probability it’s not been seen in the past x executions is

(

1 −
1

64

)

x

. The

probability that it’s been seen exactly once is
(

1 −
1

64

)

x−1 1

64
x. The probability that it’s been seen less than 2 times is the sum,

(

1 −
1

64

)

x

+
(

1 −
1

64

)

x−1 1

64
x. So to find the warmup time for this pattern solve

(

1 −
1

64

)

x

+
(

1 −
1

64

)

x−1 1

64
x = 0.05

for x. Using a symbolic math program (Mathematica) that yields x = 301.7. So the total warmup time is 3 × 301.7. Grading

note: no one got it quite that close.

An acceptable answer to the problem would be a warmup time of 3 × 2 × 26 executions, which is the boxed answer before the
explanation.

The minimum history size has to be large enough to hold 4 C2 outcomes. It takes three global outcomes to hold one C2 outcome, so
the minimum history size is 12 outcomes.
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Problem 3: The diagram below is for a 64-MiB (226-character) 16-way set-associative cache on a system
with the usual 8-bit characters. (20 pts)

(a) Answer the following, formulæ are fine as long as they consist of grade-time constants.

�Fill in the blanks in the diagram.
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Out


Out


64 b


32 b


:9


31:22 31:22

21:3

21:9 21:

21:3

�Show the address bit categorization. Label the sections appropriately. (Alignment, Index, Offset, Tag.)

Address:

Tag

31 22

Index

21 9

Offset

8 3 2 0

�Memory Needed to Implement (Indicate Unit!!):

It’s the cache capacity plus 16 × 222−9 (32 − 22 + 1) bits.

�Line Size (Indicate Unit!!):

Line size is 29 = 512 characters.

�Show the bit categorization for a direct mapped cache with the same capacity and line size.

Address:

Tag

31 26

Index

25 9

Offset

8 3 2 0
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Problem 3, continued: For the problems on this page use the cache from the previous page.

(b) The code below runs on the same cache as the first part of this problem. Initially the cache is empty;
consider only accesses to the array.

�What is the hit ratio running the code below? Explain

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

int i;

int ILIMIT = 1 << 27; // = 227

for(i=0; i<ILIMIT; i++) sum += a[ i ];

for(i=0; i<ILIMIT; i++) sum += a[ i ];

The line size is 29 = 512 characters and the size of an array element is one character. Therefore each miss will be followed by 511
hits. The hit ratio for the first loop will be 511

512
. Will a[0] still be cached when the second loop starts? The cache capacity is given

as 226 characters and the first loop accesses 227 characters, so they can’t all fit. The cache will replace the least-recently used line
within a set, and so a[0] won’t be cached when the second loop starts. In fact, nothing brought in by the first loop is used in the

second loop so the overall hit ratio is 511

512
.

(c) The slightly different code below runs on the same cache as the first part of this problem. Initially the
cache is empty; consider only accesses to the array.

�Find the hit ratio. Very briefly explain.

double sum = 0.0;

char *a = 0x2000000; // sizeof(char) = 1 character.

int i;

int ILIMIT = 1 << 27;

for(i=0; i<ILIMIT; i++) sum += a[ i ];

for(i=ILIMIT-1; i>=0; i--) sum += a[ i ];

The only difference here is that the second loop iterates backward. The last element accessed by the first loop is a[227 − 1], which
is also the first element accessed by the second loop and so the second loop will start out with a hit (and 511 more while it consumes
the line). Since the cache can hold half the array, half of the execution of the second loop will have a 100% hit ratio. The overall

hit ratio is 3

4

511

512
+ 1

4

512

512
.
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Problem 4: Answer each question below.
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(a) The execution of some code
fragments on the illustrated im-
plementation appear below. Ex-
plain why each execution is im-
possible and show a corrected
pipeline execution diagram. (7 pts)

# Cycle 0 1 2 3 4 5 6

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r3 IF -> ID EX ME WB

Fix: IF ID -> EX ME WB

�Fix.

�Was impossible because:

The add did need to stall so the r2 value could be bypassed from the lw. However there is no way the control logic could know this
in cycle 2 because the add had not yet arrived.

# Cycle 0 1 2 3 4 5 6 7

lw r2, 0(r4) IF ID EX ME WB

add r1, r2, r3 IF ID -> EX ME WB

xor r5, r6, r7 IF ID -> EX ME WB

Fix: IF -> ID EX ME WB

�Fix.

�Was impossible because:

In cycle 3 the ID stage holds two instructions, add and xor. It only has room for one.

add.d f0, f2, f4 IF ID A1 A2 A3 A4 ME WB

Fix: IF ID A1 A2 A3 A4 WF

�Fix.

�Was impossible because:

Floating point instructions do not pass through the ME stage, and they use WF for writeback.
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(b) For each feature below indicate whether it is usually a feature of the ISA or the implementation, and
explain why it’s not a feature of the other. (7 pts)

Feature: The opcode can be found in bits 31:26.

� ISA or Implementation?

�Why not the other?

The ISA should define everything you need to know to write a program (or to write a compiler). That would have to include instruction
coding, including the position of the opcode field. If it were in the implementation then a compiler would have no idea where to place
the opcode and different implementations could expect the opcode bits in different positions, so there would be no compatibility.

Feature: The add in the code below will stall for one cycle.

lw r1, 0(r2)

add r3, r1, r4

� ISA or Implementation ?

�Why not the other?

The ISA in principle could specify that the add should stall, but that would overly constrain implementations. If an implementation
technique were developed that would allow the add execute without a stall it could not be used in the implementation of this ISA.

Feature: Two consecutive delayed (as in MIPS) branches will yield unpredictable results.

bneq r1, r2 DEST1

beq r3, r4 DEST2

addi r5, r6, r7

� ISA or Implementation?

�Why not the other?

The ISA specifies what programs do. Normally, an ISA would either say such pairs are illegal, in which case an implementation might
raise an exception on such code, or it might say such pairs are fine (just execute one instruction at DEST1 then continue at DEST2),
in which case the implementation must handle them properly. Leaving it up to the implementation would break compatibility because
each might handle such pairs differently.

Feature: Integer addition overflow raises exception.

� ISA or Implementation?

�Why not the other?

The ISA specifies the behavior of the program, including whether instructions raise exceptions. If it were up to the implementation
then code would not be portable.

Note that the question is about whether overflow raises an exception, it is not about what the exception handler should do. The
handler is part of the operating system, not the ISA or implementation.
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(c) Consider the use of a packed-operand 8-bit add (of the type described in class) to speed up the code
fragments below. For each fragment indicate whether it’s certainly feasible, feasible with certain assumptions,
or not feasible. (6 pts)

extern char *a, *b, *c;

for(i=0; i<1024; i++) a[i] = b[i] + c[i];

�Circle One: No. Yes! Yes, assuming . . .

�Explain.

Yes assuming that saturating arithmetic is okay. That is, if the program expects 120 + 10 = −126 (because of overflow), then
saturating arithmetic would break the program. If, on the other hand the program works correctly with 120 + 10 = 127 (because
of saturation), then packed operand instructions should work fine.

extern int *a, *b, *c;

for(i=0; i<1024; i++) a[i] = b[i] + c[i];

�Circle One: No. Yes! Yes, assuming . . .

�Explain.

Assuming that despite the use of integers, array elements are in the range [−128, 127] and a sum is also in the range or that
saturation is okay.

extern char *a, *b, *c;

for(i=1; i<1024; i++) a[i] = a[i] + a[i-1];

�Circle One: No. Yes! Yes, assuming . . .

�Explain.

To compute a[i] element a[i-1] is needed so there is no easy way to do this in parallel with packed operand instructions.
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(d) MIPS and other RISC ISAs typically have instructions using displacement addressing but lack register
deferred addressing. (See the examples below.)

lw r1, 4(r2) # Displacement addressing.

lw r1, (r2) # Register deferred addressing.

Given that RISC and CISC ISAs have displacement addressing:

� (5 pts) Why is register deferred addressing helpful for CISC but not helpful for RISC?

Register deferred addressing lacks the displacement that is included in the displacement addressing already present in the two ISAs,
they are otherwise identical. Because CISC instructions have variable length, an instruction with register deferred addressing can be
shorter than one with displacement addressing, making programs smaller. In RISC all instructions are the same size so there is no
advantage in omitting the displacement.

(e) Dead-code elimination (DCE) is a common compiler optimization.

� (5 pts) What is it? Illustrate using an example.

The removal of code that’s either never executed or that produces values that are never used. See the example below.

a=1; // This line would be removed by DCE.

a=2;
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