
LSU EE 4720 Homework 1 Solution Due: 11 February 2005

Problem 1: POWER is an IBM ISA developed for engineering workstations, PowerPC is an ISA
developed by IBM, Apple, and Motorola for personal computers and is based on POWER. POWER
and PowerPC have instructions in common but each has instructions the other lacks (and some of
the common instructions behave differently). Therefore a POWER implementation could not run
every PowerPC program and vice versa.

(a) Show the gcc 3.4.3 compiler switches used to compile code for a POWER implementation. Hint:

Google is your friend, look for gcc documentation.

Either of the following switches compiles for a generic POWER implementation -mpower, -mcpu=power. The
compiler can also be told to target a particular implementation, for example, -mcpu=rios2.

(b) Show the gcc 3.4.3 compiler switches used to compile code for a PowerPC implementation.
Either of the following switches compiles for a generic PowerPC implementation -mpowerpc, -mcpu=powerpc. The

compiler can also be told to target a particular implementation, for example, -mcpu=620

(c) Is it possible to use gcc 3.4.3 to compile a program that will run on both? If yes, show the
switches.

Yes, one way is to specify two switches: -mno-power -mnopowerpc, the other uses the single switch -mcpu=common.

Problem 2: From the SPEC Web site, http://www.spec.org, find the fastest result on the
SPECFP2000 (that’s FP, not INT) benchmark for each of the following implementations: IBM
POWER5, Intel Itanium2, Intel Pentium 4, Fujitsu SPARC64 v, and AMD FX-55. (Use the
configurable search form and have it display the processor name.)

(a) The non-IA-32 implementations (POWER5, Itanium2, and SPARC64 V) blow away the IA-32
implementations on one benchmark. Which one? Which company (of those listed above) would
want that benchmark removed?

The Art benchmark runs much faster on non-IA 32 systems: SPARC64 12.3. POWER5, 23.1; Itanium 2, 21.0
Pentium 4, 52.6, Opteron, 78. AMD would most want it removed.

(b) The POWER5 can decode five instructions per clock, the Itanium 2 can decode six instructions
per clock, the Pentium 4 and FX-55 each can decode three (what are essentially) instructions per
clock, and the SPARC64 V can decode four per clock. Based on the SPECFP2000 results used in
the first part, which processor is making best use of these decode opportunities? In other words,
if one processor could decode 1012 instructions during execution of the suite and another could
decode 5× 1012 instructions during execution of the suite, the first would be more efficient since it
ran the suite using fewer instructions. (See last semester’s Homework 1 for a similar problem.)

To solve this one needs to multiply the instructions-per-second potential of the processor by the run time for the
suite. The instructions-per-second potential is the product of the decode rate given above (say, 5 per second for POWER5)
and the clock frequency. The run times are given in the disclosure and can be added, but a less time consuming method
would be to use the reciprocal of the score. So for the POWER5 the result would be 5×1900 MHz

2796
= 3.40, where 2796

is the SPECfp2000 result. For the Itanium 2, 6×1600

2712
= 3.54; Athlon, 3×2600

2012
= 3.88; Pentium 4, 3×3733

2016
= 5.56;

and SPARC64 V, 4×1870

1973
= 3.79. The POWER5 is the “winner” here because it uses the fewest decode slots to execute

the SPECfp2000 benchmarks. This can be because POWER5 programs have fewer instructions or because the POWER5
implementation wastes the fewest decode slots (or a combination of the two). In this case the POWER5 is both the most
frugal and the fastest. Note that the Athlon and Pentium are almost tied in performance but that the Pentium uses alot
more decode slots to attain that performance.

Problem 3: As pointed out in class a processor’s CPI varies depending on the program being
executed. For the questions below write a program in MIPS assembler (see

http://www.ece.lsu.edu/ee4720/
http://www.spec.org

http://www.ece.lsu.edu/ee4720/mips32v2.pdf for a list of instructions), some other assembly
language, or assembly pseudocode, as requested below.

(a) Write a program that might be used to determine the minimum possible CPI. Suppose you
actually used the program to determine the minimum CPI on processor X. How would the CPI
be computed? Show an example using made up numbers based on your program an hypothetical
processor X. Explain why the result would be the minimum CPI (or close to it).

Many processors do not attain their peak CPI because of program characteristics. Two causes are using instructions
that take a long time and having nearby instructions depend on each other, forcing the processor to delay the start of the
later instructions. When writing a program to determine peak cpi avoid long-executing instructions and close dependencies.
The program below uses integer add instructions, which are fast and which lacks dependencies.

LOOP:

add r1, r2, r3

add r4, r5, r6

add r7, r8, r9

...

j LOOP

add r28, r29, r30

(b) Write a program that might be used to determine the maximum possible CPIand as with
the previous part, show how CPI is computed. Your answer should include information about
instructions in processor X used in your program. Explain why the result would be the maximum
CPI (or close to it).

Include long-executing instructions that depend on each other.

LOOP:

div.d f0, f2, f4

div.d f0, f0, f4

div.d f0, f0, f4

div.d f0, f0, f4

...

j loop

div.d f0, f0, f4

http://www.ece.lsu.edu/ee4720/mips32v2.pdf

