LSUEE 4720 Homework 1 soution ~ Due: 11 February 2005

Problem 1: POWER is an IBM ISA developed for engineering workstations, PowerPC is an ISA
developed by IBM, Apple, and Motorola for personal computers and is based on POWER. POWER
and PowerPC have instructions in common but each has instructions the other lacks (and some of
the common instructions behave differently). Therefore a POWER implementation could not run
every PowerPC program and vice versa.

(a) Show the gce 3.4.3 compiler switches used to compile code for a POWER implementation. Hint:
Google is your friend, look for gcc documentation.

Either of the TO\\OWN\g switenes QONP\\QS for a anQY'\Q POWER '\mp\Qanmion -Mpower, -Mepu=power. The
Q()mp“%f can also be told 1o target 4 pMUQU\&Y '\mp\emcemat'\on, for examp\@,, -meU:NOSZ

(b) Show the gce 3.4.3 compiler switches used to compile code for a PowerPC implementation.
Either of the TO\\O\ng switenes Qomp'\\@s for a generic PowerPC '\mp\em@mat'\on -Mpowerpe, -mepu=powerpe. The
QOTT\P“QY can also be told 1o targ@t a pMUQU\&Y '\mp\o.m@nmt'\on, for QXElmP\Q, -meU:ﬁZO

(¢) Is it possible to use gece 3.4.3 to compile a program that will run on both? If yes, show the
switches.
Yes, one way is to specify two switehes: -mno-power -mnopowerpe, the other uses the single switeh -mepu=common.

Problem 2: From the SPEC Web site, http://www.spec.org, find the fastest result on the
SPECFP2000 (that’s FP, not INT) benchmark for each of the following implementations: IBM
POWERSD5, Intel Itanium?2, Intel Pentium 4, Fujitsu SPARC64 v, and AMD FX-55. (Use the
configurable search form and have it display the processor name.)

(a) The non-IA-32 implementations (POWERS, Itanium2, and SPARC64 V) blow away the IA-32
implementations on one benchmark. Which one? Which company (of those listed above) would
want that benchmark removed?

The Art benchmark runs mueh faster on non-1A 32 systems: SPARC64 12.3. POWERS, 23.1; ltanium 2, 21.0
Pentium 4, 52.6, Opteron, 78. AMD would most want it removed.

(b) The POWERSH can decode five instructions per clock, the Itanium 2 can decode six instructions
per clock, the Pentium 4 and FX-55 each can decode three (what are essentially) instructions per
clock, and the SPARC64 V can decode four per clock. Based on the SPECFP2000 results used in
the first part, which processor is making best use of these decode opportunities? In other words,
if one processor could decode 10'2 instructions during execution of the suite and another could
decode 5 x 10'? instructions during execution of the suite, the first would be more efficient since it
ran the suite using fewer instructions. (See last semester’s Homework 1 for a similar problem.)

To solve this one needs 1o mump\y the '\T\SUUQUO[\S-pQY-SQQOﬁd POIQT\UQ\ of the processor by the run time for the
suite. The '\\'\SUUQUOT\S-PQY-SQQOHG P()mm'\&\ is the PYOGUQY of the decode rate g\\/‘éﬂ apove (S‘Ay, 5 per second tor PO\NERS)
and the clock TYQQUQﬂQy. The run times are g\VQﬁ in the disclosure and can be added, but & less time eonsummg method

would be to use the reciprocal of the seore. So for the POWERS the result would be 2X900MHz — 3 40 where 2796

is the SPECTP2000 result. For the ftanium 2, 81890 — 3 54: Atnlon, 3X2600 — 3 88 Pentium 4, 353733 — 5 56
and SPARC64 V, L7870 = 3.79. The POWERS is the “winner here because it uses the fewest decode slots to execute

the SPECTP2000 benchmarks. This can be because POWERS programs have fewer instructions or because the POWERS
implemaentation wastes the fewest decode slots (()Y a combination of the YWO). In this case the POWERS is both the most
frugal and the fastest. Note that the Athlon and Pentium are almost tied in performance but that the Pentium uses alot
more decode §l0ts 1o attain that performance.

Problem 3: As pointed out in class a processor’s CPI varies depending on the program being
executed. For the questions below write a program in MIPS assembler (see

http://www.ece.lsu.edu/ee4720/
http://www.spec.org

http://www.ece.lsu.edu/ee4720/mips32v2.pdf] for a list of instructions), some other assembly
language, or assembly pseudocode, as requested below.

(a) Write a program that might be used to determine the minimum possible CPI. Suppose you
actually used the program to determine the minimum CPI on processor X. How would the CPI
be computed? Show an example using made up numbers based on your program an hypothetical
processor X. Explain why the result would be the minimum CPI (or close to it).

Mﬁﬂy processors do not attain their pQQK CP1 because of program characteristics. Two causes are US\T\g instructions
that take a \OT\g time and hav'mg ﬂégﬂ)y instructions GQPQ\'\G on each other, Tore‘mg the processor 10 dQ\&y The start of the
later instructions. When writing program 1o determine pQ&K Qp\ avoid \OT\g-QXQQUUﬂg instructions and close GQPQHGQI\Q\QS.
The program Delow uses 'mteg@r add instructions, which are tast and which 1acks depend@nel@s.

LOOP:
add r1, r2, r3
add r4, r5, r6
add r7, r8, r9
...
j LOOP
add r28, r29, r30

(b) Write a program that might be used to determine the maximum possible CPland as with
the previous part, show how CPI is computed. Your answer should include information about
instructions in processor X used in your program. Explain why the result would be the maximum
CPI (or close to it).

Include \()T\g—@XQQUUﬂg instructions that GQPQT\G on each other.

LOOP:

div.d f0, f2, f4
div.d f0, f0, f4
div.d f0, f0, f4
div.d f0, f0, f4
...

j loop

div.d f0, f0, f4

http://www.ece.lsu.edu/ee4720/mips32v2.pdf

