
Name Solution

Computer Architecture

EE 4720

Midterm Examination 1.0.4

Friday, 22 October 2004, 10:40–11:30 CDT

Alias Titan at last!!!

Problem 1 (30 pts)

Problem 2 (15 pts)

Problem 3 (25 pts)

Problem 4 (30 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee4720/

Problem 1: The routine below is to do a binary search on an array and return 1 if the item is found, 0
otherwise. Complete the MIPS program using the C++ code as a guide. [30 pts]

©The only allowable synthetic instruction is nop.

©Fill as many delay slots as possible. The order of the assembly code does not have to match the order of the
C code.

unsigned int delta = size; int pos = 0;
while(true) {
delta = delta >> 1;
int next_pos = pos + delta;
int e = array[next_pos];
if(e == target) return 1;
if(!delta) return 0;
if(e < target) pos = next_pos;
}

CALL VALUE: $a0, array: Address of array. Each element is a WORD-SIZED int.
CALL VALUE: $a1, size: Number of elements in array. A power of 2.
CALL VALUE: $a2, target: Value to find.
RETURN VALUE: $v0, 1, if target in array; 0, if not in array.
Can modify registers $a0-a3, $t0-$t9

Solution
#
Common problems highlighted. Solution below shows correct code.
#
bsearch:

$a1 is delta
addi $t0, $0, 0 # pos = 0;

LOOP:
srl $a1, $a1, 1 # delta = delta >> 1;
add $t1, $t0, $a1 # next_pos = pos + delta

COMMON PROBLEM: Index not scaled.
sll $t2, $t1, 2 # Scale array index since elements are four bytes.
add $t2, $a0, $t2 # t2 = &array[next_pos]
lw $t2, 0($t2) # t2 = e, array[next_pos]
bne $t2, $a2 SKIP1
nop
jr $ra # Element found, return 1.
addi $v0, $0, 1

SKIP1:
bne $a1, $0 SKIP2
nop # Delta zero, return 0.
jr $ra
addi $v0, $0, 0 # COMMON PROBLEM: Jump delay slots ignored.

SKIP2:
if (element < target) pos = next_pos
#
slt $t3, $t2, $a2
beq $t3, $0 LOOP
nop
j LOOP
addi $t0, $t1, 0

2

Problem 2: In MIPS and many other ISAs floating-point instructions read and write a FP register file while
most other instructions read and write general-purpose (integer) registers. Suppose MIPS-I were modified
so that FP instructions used the same registers as the integer instructions. The registers are still 32 bits and
can be used in pairs by instructions operating on double-precision operands. The new version of MIPS is
not compatible with MIPS-I, don’t worry about that.

(a) For each MIPS-I instruction below indicate whether it will be retained in the new ISA, “KEEP”, or will
not be needed, “OMIT.” Also add any new instructions that might be needed. If an instruction is kept but
operates differently describe the difference. [15 pts]

© Indicate KEEP or OMIT.

© If omitted show an existing instruction that would be used in its place.

© If kept, explain how it would operate differently.

lwc1: OMIT, use lw instead.

ldc1: KEEP, but writes GPRs (call it ld now).

cvt.w.d: KEEP (but operates on the integer registers.) Still need to convert from integer to FP.

cvt.d.w: KEEP (but operates on the integer registers.) Still need to convert from FP to integer.

mfc1: OMIT. No longer an FP reg file to move values from.

mtc1: OMIT. No longer an FP reg file to move values to.

add.s: Keep, but operates on integer registers.

add.d: KEEP, but operates on integer register pairs.

c.lt.s: KEEP, write result (0 or 1) to register.

c.le.d: KEEP, write result (0 or 1) to register.

bc1t: OMIT. Use bne or beq.

Hint: In bc1t b is for branch, t is for true.

Grading Notes:

Many suggested eliminating c.lt.s and using slt instead. This will almost work because if one IEEE 754 number is larger than
another then its binary encoding interpreted as a two’s complement number is larger than the other and so an integer comparison can
be performed. Perhaps many had that in mind when they suggested using slt (I hope). The problem is that IEEE 754 has several
non-number encodings and the comparison instruction is supposed to raise an exception if an attempt is made to compare them, slt
won’t do that.

3

The original exam had c.gt.d. There is no such instruction, ooops.

(b) If your answer for bc1t above was “OMIT” describe below how the instruction can be kept (possibly
modified). If your answer was “KEEP” explain how it can be omitted. This will affect other instructions,
list them and explain how they are affected.

Instruction bc1t branches if the FP condition code register is true. The instruction was omitted above because the comparisons
write a general purpose register.

In this part keep bc1t and modify the comparison instructions c.lt.d, etc. so that they write the FP condition code register
instead of an integer register, as they did in the previous part.

4

Problem 3: Using an interesting technique the program below returns the value of register X, where X is
a number in register $a0. For example, if $a0 held an 8 the program would return the value of $8 (or $t0
using the register name) in register $v0. Consider:

jal copyreg
addi $a0, $0, 8
After copyreg returns $v0 has contents of $t0.

addi $v0, $t0, 0 # $t0 is $8, register number 8
At this point $v0 has contents of $t0.

From the code above it looks like the copyreg routine is doing things the hard way. The one advantage is that
it can copy a source register known only at run time or that might change. In contrast, the addi instruction
always copies $t0. Note: In the original exam the description and example above were not included.

(a) Modify the program so that it takes a second call value, a1, which holds a second register number. The
return value is put in that register. For example, if a0 holds a 12 and a1 holds a 3 then the routine copies
the value in r12 to r3. [17 pts]

© Show additions and changes. The added code must use a similar technique to the existing code.

Hint: Can be solved with two added instructions and a few minor modifications.

Solution.

CALL VALUE: $a0 A register number. (Except v0)
CALL VALUE: $a1 A register number.
RETURN VALUE: Return value in register specified by $a1

copyreg:
la $v0, template # Put address of label "template" into $v0.
lw $v0, 0($v0) # Load template instruction into $v0.
sll $a0, $a0, 21 # Shift register number to rs position.
add $a0, $v0, $a0 # Insert source register number into instruction.

Solution (Next two instructions, and modification of template.)

sll $a1, $a1, 11 # Shift register number to rd position.
add $a0, $a0, $a0 # Insert destination register into instruction.

la $v0, mod # Load address of last instruction in this routine.
sw $a0, 0($v0) # Store created instruction at end of this routine.
jr $ra # Return ...

mod:
add $v0, $0, $0 # ... and move registers.

template:
add $v0, $0, $0 Original instruction had dest of v0.
add $0, $0, $0 # In solution make that a $0 since it’s modified.

Format R:

opcode

31 26

rs

25 21

rt

20 16

rd

15 11

sa

10 6

func

5 0

5

Problem 3, continued:

(b) Suppose one were considering adding a new machine instruction, copyreg, that does the same thing
as the routine above (before modification for part 1). Provide arguments for and against adding the new
instruction. The arguments can include made-up data as long as it does not conflict with what has been
given in this problem or in class. At least one of the arguments must refer to features of the code from
part 1. [8 pts]

©Provide an argument in favor of adding the instruction.

Programs needing to copy a register known only at run time would work much faster if they had a machine instruction to do it.

Grading Note: Though the routine above performs a load and a store, that’s not the way an implementation would do it.

©Provide an argument against adding the instruction. Do not simply reverse an assumption made above.

Instructions like this are not needed very often.

6

Problem 4: Answer each question below.

(a) A company is developing an implementation of an ISA. To guide their design they are using a SUBSET
of the SPECcpu benchmark programs. [7 pts]

Grading Note: A surprising number of students seemed to miss the word subset and answered the question as though it were about
the full set of SPEC CPU benchmarks, not a subset.

©Describe a situation in which that’s a foolish thing to do and explain why it’s foolish.

It is foolish if the intended customers run a wide range of programs similar to the full set of benchmarks. By omitting certain programs
the company will not be designing their implementation to run those programs fast.

©Describe a situation in which that’s a smart thing to do.

It’s smart if the subset matches what the intended customers to run. This way time is not wasted optimizing a design for programs
their customers won’t be running.

7

(b) Compiler optimizations are important. [8 pts]

©Describe a compiler optimization for which the compiler needs no knowledge of the ISA.

© Show an example.

Common subexpression elimination.

// Before
if(a+b < c) x = a + b;

// After (optimization shown in C, but actually done in compiler intermediate
// representation.)
int s = a + b;
if (s < c) x = s;

©Describe a compiler optimization for which the compiler does need to know the target ISA.

Register assignment. Compiler needs to know how many registers there are, not to mention what are the instructions which need
register values in the first place.

8

(c) A goal in the design of MIPS and other RISC ISAs is to minimize the number of registers with specialized
purposes. In MIPS r31, a.k.a. $ra, does have a specialized purpose. [7 pts]

©Why was it necessary to make an exception in this case?

The jal instruction stores the return address in register ra. It is coded in format J which only has an opcode and immediate (ii)
field, there is no room for a register number. Therefore if there was to be a jump and link with a 26 + 2-bit region it would have to
save the return address in a fixed register.

(d) The target in MIPS branch instructions is specified by indicating the number of instructions to skip.
[8 pts]

©Why couldn’t such an approach be used in CISC ISAs?

Because CISC instructions are variable size and so computing a target address using a number of instructions to skip cannot be
done by just multiplying that number by the instruction size. The implementation would have to know the sizes of the intervening
instructions which would be extremely impractical. Instead branch targets typically specify the number of bytes to skip.

© Specifying the number of instructions to skip saves two bits over what is needed for CISC targets. Why is
saving two bits not as important in the design of CISC instructions?

Because instructions are variable length their size can be increased to accommodate the size of any needed operands. In the case of a
branch the instruction encoding can be made as large as needed to hold the displacement, even if the displacement is two bits larger
(which isn’t very much anyway) than in most RISC ISAs.

9

