
03-1 03-1Instruction Set (ISA) Design and Addressing Modes

Material from sections 2.1, 2.2, and 2.3.

Outline

ISA Design Choices

It’s more than just picking instructions.

ISA Design Choice Details

Screw up, and you’ll be cursed for decades.

03-1 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-1

03-2 03-2ISA Design Decisions

I. Organization

A. Data types (supported by ISA).

B. Memory and register organization.

C. Addressing modes.

II. Instruction Choices

A. Data movement instructions.

B. Arithmetic and logical instructions.

C. Control transfer instructions (CTIs). (Branch, jump, call, return.)

D. Process and processor management instructions.

III. Instruction Coding

03-2 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-2

03-3 03-3ISA Design Choice Details

Outline

Data Types

Memory and Register Organization

ISA Classification

Addressing Modes

Displacement and Immediate Sizes

03-3 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-3

03-4 03-4Data Types

To include a new data type:

Determine its size.

Define operations.

Add new instructions to operate on it.

03-4 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-4

03-5 03-5

Data Types for Simple 32-bit Machine

Type Special Instructions

32-bit signed integer
32-bit unsigned integer addu
16-bit signed integer lh, load half-word.
16-bit unsigned integer lhu, load half-word unsigned.
8-bit signed integer lb, load byte.
8-bit unsigned integer lbu, load unsigned byte.
32-bit float addf, add 32-bit floating-point.
64-bit float (double) addd, add 64-bit floating-point.

Signed integer types operated on by integer arithmetic instructions.

Unsigned integers operated on by logical and unsigned integer arithmetic instructions.

The basic 32-bit load instruction not appropriate for smaller types.

The lh, lhu, lb, and lbu instructions . . .

. . . place data in low portion of 32-bit registers . . .

. . . and place zeros or a sign bit high portion.

03-5 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-5

03-6 03-6

Data Type Tradeoffs

Is cost worth the benefit?

Benefit is improved performance, but who benefits?:

Everyone (performance better on whole SPEC suite). . .
. . . if not then some class of programs (e.g., floating point, graphics) . . .

. . . if not then my demo program :-).

Chip area, a limited resource, . . .

. . . might be given to data type (or other feature) with most benefit.

03-6 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-6

03-7 03-7

Data Type Tradeoff Examples

Start with integer-only ISA.

Example of a good new data type: floating-point.

FP hardware many times faster than software.

Floating-point arithmetic used frequently in many programs.

03-7 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-7

03-8 03-8

Example of a bad new data type: time.

Detail of time data type:

Size 64 bits. (The number of seconds since 1970 UTC, avoid Y2.038k [s4G?] problem.).

Some Instructions:

t.add.day 〈sumtime〉 〈time〉 〈days〉 . . .

. . . All operands are registers. . . .

. . . Add 〈days〉 days (an integer) to 〈time〉 (a time), store result in 〈sumtime〉.

t.to.dom 〈dom〉 〈time〉 . . .

. . . All operands are registers. . . .

. . . Store the day of month (integer) for time 〈time〉 in register 〈dom〉.

t.diff 〈diff〉 〈time1〉 〈time2〉 . . .

. . . All operands are registers. . . .

. . . Store the difference between 〈time1〉 and 〈time2〉 in 〈diff〉.

03-8 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-8

03-9 03-9

Problems with time data type.

Instructions would not be used often enough.

Possibly not much faster.

Complex control, about the same as transcendental functions (sin, etc.).

Therefore chip area and unused opcodes should be used for other new data types.

03-9 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-9

03-10 03-10Overview of Popular Data Types

Common Data Type Sizes

Size names are particular to an ISA.

Don’t assume a word size is four (or two or eight) bytes.

Type usually specified with a size.

• Byte, char, octet. 1 byte (8 bits here).

• Half word. 2 bytes.

• Word. 4 bytes.

• Doubleword. 8 bytes.

• Quadword. 16 bytes.

03-10 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-10

03-11 03-11

Common Types and Sizes

• Unsigned integer and integer. Byte, half word, word, doubleword.

Used for address computation and throughout programs.

Integer size (along with address space) defines ISA size: 32-bit, 64-bit, etc.

Integers are sign-extended when moved into a larger register . . .

. . . while unsigned integers are not.

• Floating-point. Word, doubleword, quadword.

Most newer machines use the IEEE 754 format.

03-11 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-11

03-12 03-12

• BCD. Word, etc.

Each word holds several BCD digits of a single fixed-point number.

E.g., word holds a 8-digit BCD integer.

Decimal fractions such as .03 exactly represented.

Used for financial computations, typically in Cobol programs.

Used primarily in older architectures.

• Packed integer, packed fixed-point. Word, double word.

Holds several small integer or fixed-point values.

Operated on by saturating arithmetic instructions.

Used by packed-operand instructions which operate on each small value in parallel.

Used in newer ISA versions. E.g., Sun VIS, Intel MMX, HP PA MAX.

03-12 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-12

03-13 03-13Integer, BCD, and Packed Integer Example

Consider integers 123910 and 567810.

As half-word-size (short) integers: . . .

. . . 123910 = 0x04d7 =

Sign

0

31 16

Short Int.

0x04d7

15 0
(in 32-bit register) and . . .

. . . 567810 = 0x162e =

Sign

0

31 16

Short Int.

0x1628

15 0

As BCD integers:

123910 = 0x1239 =

MSD

0

31 28

0

27 24

0

23 20

0

19 16

1

15 12

2

11 8

3

7 4

LSD

9

3 0

567810 = 0x5678 =

MSD

0

31 28

0

27 24

0

23 20

0

19 16

5

15 12

6

11 8

7

7 4

LSD

8

3 0

03-13 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-13

03-14 03-14

Consider two lists of integers: {1, 2, 3, 9} and {5, 6, 7, 8}.

As packed 4-bit unsigned integer (8 4-bit numbers per word):

{1, 2, 3, 9} = 0x1239 = 0

31 28

0

27 24

0

23 20

0

19 16

1

15 12

2

11 8

3

7 4

9

3 0

{5, 6, 7, 8} = 0x5678 = 0

31 28

0

27 24

0

23 20

0

19 16

5

15 12

6

11 8

7

7 4

8

3 0

03-14 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-14

03-15 03-15Examples of Packed Data Types

Addition: Integer

0x04d7
+ 0x162e
0x1b05

= 691710

BCD

0x1239
+ 0x5678

0x6917
= 691710

Packed Int.

0x1239
+ 0x5678

0x68af
={6, 8, 10, 15}

0x1b05=

Sign

0

31 16

Short Int.

0x1b05

15 0

0x6917 =

MSD

0

31 28

0

27 24

0

23 20

0

19 16

6

15 12

9

11 8

1

7 4

LSD

7

3 0

0x68af = 0

31 28

0

27 24

0

23 20

0

19 16

6

15 12

8

11 8

a

7 4

f

3 0

Addition of packed integers is saturating: . . .

. . . result is maximum value if sum exceeds maximum value.

For example, 12 + 8 = 15, assuming 15 is the maximum value.

03-15 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-15

03-16 03-16Data Type Usage

Data below for SPEC92 programs on VAX.

0% 40% 80%20% 60%

0%
19%

7%

31%
74%Word

Half word

Byte

0%

0%

Double word
69%

Frequency of reference by size

Integer average Floating-point average

FIGURE 2.16 Distribution of data accesses by size for the benchmark programs.

03-16 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-16

03-17 03-17

Size Tradeoffs

Integer: size of fastest integer (usually) equals address size.

E.g., word on a 32-bit machine, doubleword on a 64-bit machine.

On most machines a smaller integer saves space, but not time.

Floating-point: doubleword usually best choice.

Word may be faster, but can be slower . . .

. . . when double result must be rounded to word size.

03-17 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-17

03-18 03-18Data Type Coding

How data type coded:

In opcode. (Used in many ISAs.)

Integer multiply instruction, floating-point add.

In instruction’s type field. (Used in many ISAs.)

Tagged, type specified in data. (Used in a few ISAs.)

Suppose data type were word-sized, . . .

. . . 30 bits might hold the number . . .

. . . 2 bits would indicate what type the data was . . .

. . . such as integer, unsigned integer, float, or string.

03-18 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-18

03-19 03-19Memory and Register Organization

Consider: ADD 〈sum〉=〈op1〉+〈op2〉

Operands 〈op1〉 and 〈op2〉 can refer to:

• A Constant (Immediate)

• Something Written Earlier

Since “Something Written Earlier” is part of instruction . . .

. . . the ISA must define names for that storage.

Since storage defined by ISA it’s called architecturally visible storage.

Common types of architecturally visible storage:

• Registers
Sometimes there are multiple sets.

• Memory
Sometimes there are multiple address spaces.

Other types are less common.

03-19 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-19

03-20 03-20

What ISA Defines for Architecturally Visible Storage

• Names.
For registers, r1, f30, g6. For memory, 53023.

• Result of writing and reading storage.
For systems covered in this class result is obvious (value read is last value written).

Not obvious with multiple readers and writers.

03-20 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-20

03-21 03-21Registers and Memory

Registers (Internal Storage)

Store what is actively being worked on.

E.g. Math expression parts, array indices.

Implemented using highest speed memory.

Given short names.

E.g. r1, g1, AL.

Small number of registers provided.

E.g. 32, 64.

Goal: fastest access.

03-21 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-21

03-22 03-22

Memory

Stores code and data.

Simple to programmer . . . despite complex implementation.

Many locations, 232 = 4294967296 and 264 = 18446744073709551616 1 are common.

2128 = 340282366920938463463374607431768211456 2 is a long way off or may never be used.

Named using integers called addresses. . .

. . . and some address space identifier.

Goal: large size.

Rule of thumb: address space needed grows by one bit per year.

Very difficult to change ISA’s address space size . . .

. . . so chosen to be much larger than contemporary needs.

1 Eighteen quintillion, four hundred forty-six quadrillion, seven hundred forty-four trillion, seventy-three billion,
seven hundred nine million, five hundred fifty-one thousand, six hundred sixteen.

2 Three hundred forty undecillion, two hundred eighty two decillion, three hundred sixty six nonillion, nine hundred
twenty octillion, nine hundred thirty eight septillion, four hundred sixty three sextillion, four hundred sixty three
quintillion, three hundred seventy four quadrillion, six hundred seven trillion, four hundred thirty one billion,
seven hundred sixty eight million, two hundred eleven thousand, four hundred fifty six.

03-22 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-22

03-23 03-23Memory Addressing

Address Interpretation

Sequence of memory locations (usually bytes) starting at address.

Size of sequence depends upon instruction.

E.g., DLX lw, load word, instruction reads four bytes.

E.g., DLX lb, load byte, instruction reads one byte.

Example:

lw r1, 0(r2) ! Load r1 with 4 bytes starting at addr. in r2.
lb r3, 0(r2) ! Load r3 with byte at address in r2.
! Register r1 = r3 if r1 < 128 and r1 > 0.

03-23 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-23

03-24 03-24

Alignment

Addresses may be subject to alignment restrictions. . .

. . .when used in certain instructions.

E.g., a word-aligned address must be divisible by 4 (usual word size).

Example.

! In an unaligned ISA both instructions can execute.
! In an aligned ISA at most one could execute, the other would
! cause an error (memory access violation exception).
lw r1, 0(r2) ! Load r1 with data at address r2.
lw r3, 1(r2) ! Load r3 with data at address r2 + 1.

03-24 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-24

03-25 03-25Common Addressing Modes

Addressing modes used by many ISAs.

Register

Data in register.

Move r4, r3 ! r4 = r3 Data in r3.
add r4, r2, r3 ! r5 = r2 + r3 Data in r2 and r3.

Useful when data recently produced and is still in register.

All ISAs with registers have register addressing.

03-25 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-25

03-26 03-26

Immediate Addressing:

Data in instruction.

Move r4, #3 ! r4 = 3. Data, 3, in instruction.
add r4, r2, #3 ! r4 = r2 + 3. Data, 3, in instruction.

All ISAs have some form of immediate addressing.

ISA design parameter: immediate size (maximum immediate value).

03-26 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-26

03-27 03-27Common Memory Addressing Modes

Memory Addressing Modes

With memory addressing modes data is in memory.

Modes specify an effective address, the memory location at which data located.

There are many ways to specify a memory address:

Direct Addressing:

Effective address is a constant in instruction.

load r1, (1024) ! r1 = MEM[1024] Data at 1024.
add r4, r2, (1024) ! r4 = r2 + MEM[1024]

The add instruction could not be in load/store ISA.

ISA may need large instructions to accommodate the address.

Included in ISAs with variable instruction sizes.

03-27 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-27

03-28 03-28

Register Deferred Addressing: or Register Indirect Addressing

Effective address in register.

Load r4, (r1) ! r4 = MEM[r1]
add r4, r2, (r1) ! r4 = r2 + MEM[r1]

Note: the add instruction could not be in load/store ISA.

Included in most ISAs.

03-28 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-28

03-29 03-29

Displacement:

Effective address is register plus constant.

Load r4, 100(r1) ! r4 = MEM[r1 + 100]

Useful for accessing elements of a structure:

! In c: struct { int i; short int j; unsigned char c; } str;
! r1 = &str;
lw r2, 0(r1) ! (load word) r2 = str.i;
lh r3, 4(r1) ! (load half) r3 = str.j;
lbu r4, 6(r1) ! (load byte unsigned) r4 = str.c;

03-29 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-29

03-30 03-30

Displacement, continued.

Useful in ISAs without direct addressing and short immediates.

! lw r1, (0x12345678) ! Alas, no such instruction in DLX.
lhi r2, #0x1234 ! Load high part of r2: r2 = 0x12340000
lw r1, 0x5678(r2) ! r1 = MEM[0x5678+r2] = MEM[0x12345678]

ISA design parameter: displacement size.

Included in most ISAs.

03-30 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-30

03-31 03-31

Indexed Addressing:

Effective address is sum of two registers.

Load r4, (r1+r2) ! r4 = MEM[r1 + r2]

Useful for array access. (r1 address of first element.)

Included in most ISAs.

Memory Indirect Addressing:

Address of effective address is in register.

Load r1,@(r3) ! r1 = MEM[MEM[r3]].

Useful for dereferencing: i = *ptr

Included in some ISAs.

Others omit it since two loads would be as fast.

03-31 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-31

03-32 03-32

Autoincrement Addressing:

Perform register indirect access, then add constant to register.

Load r1,(r2)+ ! r1 = MEM[r2]; r2 = r2 + 1

Useful for loops.

Included in some ISAs.

Autodecrement:

Subtract constant from register then perform register indirect access.

Load r1,-(r2) ! r2 = r2 - 1; r1 = MEM[r2];

Useful for loops.

Included in some ISAs.

03-32 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-32

03-33 03-33

Scaled:

Effective address is constant1 + reg1 + reg2 * constant2.

Load r1,100(r2)[r3] ! r1 = MEM[100 + r2 + r3 × d]

Useful for array access.

Included in some ISAs.

There’s no limit to how many addressing modes one could think of.

03-33 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-33

03-34 03-34Memory Addressing Choices in ISA Design

Which addressing modes?

Affects cost and may limit future performance.

Which instructions get which addressing modes?

Affects cost and may limit future performance.

Maximum displacement size?

Limited by instruction size.

Maximum immediate size?

Limited by instruction size.

03-34 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-34

03-35 03-35Usage of Addressing Modes

Do we really need all those addressing modes?

Memory Addressing Usage in VAX Code.

0% 10% 20% 30% 40% 50% 60%

24%

11%

39%

32%

40%

3%

43%
17%

55%

0%

6%
16%Scaled

Register deferred

Immediate

Displacement

TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

1%
6%Memory indirect

TeX
spice
gcc 1%

Frequency of the addressing mode

FIGURE 2.6 Summary of use of memory addressing modes (including immediates).

03-35 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-35

03-36 03-36Usage of Addressing Modes

Do we really need all those addressing modes?

Memory Addressing Usage in VAX Code.

VAX uses all of addressing modes described earlier.

0% 10% 20% 30% 40% 50% 60%

24%

11%

39%

32%

40%

3%

43%
17%

55%

0%

6%
16%Scaled

Register deferred

Immediate

Displacement

TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

1%
6%Memory indirect

TeX
spice
gcc 1%

Frequency of the addressing mode

FIGURE 2.6 Summary of use of memory addressing modes (including immediates).

Modes used less than 1% of time omitted.

Large differences between programs.

Since a few modes account for most accesses . . .

. . . others could be omitted with little impact on performance . . .

. . . saving silicon area (but programs would have to be rewritten).

03-36 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-36

03-37 03-37Displacement Sizes

What should the maximum displacement size be?

Too large: difficult to code instruction.

Too small: won’t be very useful.

Displacement Size in SPECint92 and SPECfp92 Programs on MIPS.

0%

5%

10%

15%

20%

25%

30%

1514131211109876543210

Floating-point average

Integer average

Percentage of
displacement

Value

FIGURE 2.7 Displacement values are widely distributed.

Wide range of displacements used.

03-37 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-37

03-38 03-38Displacement Size in SPECint92 and SPECfp92 Programs on MIPS.

0%

5%

10%

15%

20%

25%

30%

1514131211109876543210

Floating-point average

Integer average

Percentage of
displacement

Value

FIGURE 2.7 Displacement values are widely distributed.

03-38 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-38

03-39 03-39Immediate Sizes

What should the maximum immediate size be?

Too large: difficult to code instruction.

Too small: won’t be very useful.

Immediate Sizes in VAX Code

0%

10%

20%

30%

40%

50%

60%

322824201612840
Number of bits needed for an immediate value

gcc

TeX

spice

FIGURE 2.9 The distribution of immediate values is shown.

Smaller values used more frequently.

03-39 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-39

03-40 03-40

Immediate Sizes in VAX Code

0%

10%

20%

30%

40%

50%

60%

322824201612840
Number of bits needed for an immediate value

gcc

TeX

spice

FIGURE 2.9 The distribution of immediate values is shown.

03-40 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-40

03-41 03-41Specifying Register Operands

Registers can be specified explicitly in instructions . . .

add r1, r2, r3

. . . but some ISAs allow them to be specified implicitly . . .

. . . that is, there is no need to specify a register number for some operands . . .

. . . because the instruction will always use a particular register.

Two Common Cases

Accumulator: A register for holding results.

Stack: A set of registers (and memory).

03-41 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-41

03-42 03-42

Accumulator

ISA specifies a special accumulator register . . .

. . . for example, ra.

Arithmetic instructions use accumulator for destination and for one source operand.

For example: add r4 !ra = ra + r4

Advantage: Smaller instruction coding possible.

Disadvantage: “Extra” instructions needed to move data in and out of accumulator.

03-42 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-42

03-43 03-43

Stack

Registers organized as stack. Stack may extend into memory.

Most instructions read top one or two elements.

Example: Use register names: r1, r2, r3, with r1 top of stack, etc.

! Before r1 = 1, r2 = 2, r3, = 4, r4 = 8
add ! Pop top two elements off stack, add, push sum on stack.
! After r1 = 3, r2 = 4, r3, = 8

Special Stack Machine Instructions

push 〈addr〉 Read memory at 〈addr〉 and push on stack.

pop 〈addr〉 Pop data off stack and write to memory at 〈addr〉.

Advantage: Very short instructions possible.

Disadvantage: Some code requires extra instructions.

03-43 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-43

03-44 03-44

Miscellaneous Variations

Operands per Instruction

Three typically used.

Two sometimes used.

Factors:

Instruction coding (bits to specify operands).

03-44 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-44

03-45 03-45

Addresses per ALU Instruction

Zero typically used (load/store).

One, two, even three sometimes.

Factors

Instruction coding.

(Addresses take up lots of space.)

Benefit over multiple instructions.

03-45 EE 4720 Lecture Transparency. Formatted 13:31, 10 March 2004 from lsli03. 03-45

