L'SUEE 4720 Homework 7 solution Due: 5 May 2004
The PPC 970 which was the subject of a question in Homework 6 is very similar to the
POWER4 chip, the main differences being that the POWER4 lacks the packed-operand instructions
and POWER4 includes two processors on a single chip.
Answer the following questions about the POWER4 based on information in “POWER4 Sys-
tem Microarchitecture,” by Tendler et al, available via

ing the entire paper. In particular, there is no need to read past page 17.

Problem 1. Translate the following terms, as used in class, to their nearest equivalent in the
paper.
e Integer Instruction — Fixed-point instruction.

e Instruction Queue — Issue queue.
e Reorder Buffer — Group completion table.

e Physical Register — Rename register.

Problem 2: The pipeline execution diagram below shows MIPS code on the dynamically scheduled
system described in the study guide.

(a) Re-draw the diagram using the stages from POWERA4. (Do not translate the instructions into
the POWER assembly language.) Just show one iteration and assume that the four instructions
are formed into one group. Also assume that the branch does not have a delay slot. Use stages F1,
F2, and F3 for the multiply.

See d'\agmm. Note that in POWER4 there is mandmry OﬂQ-QyQ\Q gap Datween two GQPQT\GQM instructions. Yuk!

(b) In your diagram identify the fetch and execute pipelines, as defined in class.

See dmgmm. Instructions enter the feten p'\p@,\m@ in IF and exit the feteh p'\p@\m@, in MP where U\Qy are pUI in
(d‘SpMQ\'\Qd IO) issue queues. Th@y Walt in the issue queues until the scheduler chooses them, at which time th@y enter
the execute pipeline.

Solution

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
LOOP:

ldcl £0, 0(t1) IF IC DO D1 D2 D3 XF GD MP IS RF EA DC FM WB XF CP

mul f2, f2, fO IF IC DO D1 D2 D3 XF GD MP IS RF F1 F2 F3 WB XF CP

addi t1, t1, 8 IF IC DO D1 D2 D3 XF GD MP IS RF EX WB XF CP
bneq t1, t2 LOOP IF IC DB D1 D2 D3 XF GD MP IS RF EX WB XF CP

Note: DB is an abbreviation for BP and DO (branch uses both.)
XF -> Xfer; FM -> Fmt; IS -> ISS

Fetch Pipeline Stages: IF IC DO D1 D2 D3 XF GD MP
Execute Pipeline Stages: IS RF EX,EA,DC,FM,F1-F6 WB XF

Problem 3: The POWERA4 uses what is commonly called a hybrid predictor in which each branch
is predicted by two different predictors and a third predictor predicts the prediction to use. One

1

http://www.ece.lsu.edu/ee4720/
http://www.ece.lsu.edu/ee4720/doc/power4.pdf

predictor is something like the bimodal predictor discussed in class and the other is something like
the gshare predictor discussed in class.

(a) Provide a code example in which the bimodal predictor described in class will do better than
the POWER4’s almost equivalent predictor. (Ignore the selector.)

Wwhat the PPC paper calls a local pYQG'\QIOY is called a bimodal pf@d'\QIOY in class, axeept that the PPC local pr(ﬂQtOT
uses omy a 1-Dit QT\U\/ in the BHT U&U\QY than 2). Consider the \OOp balow:

Three-iteration loop.
LOOP:

bneq rl1, r2, LOOP T TN TTN TTN
nop

The predictor used in class would have an accuraey of 66.7%, misspredicting the not-taken executions of the branch.
The local predietor would have an aceuracy of 33.3%, because it would only correctly prediet the second consecutive taken
praneh.

(b) How might the POWER4 designers justify the differences with the bimodal predictor given the
lower performance in the example above?

For o g\\/@ﬂ amount of StOY&gQ, the PPC local pYQG\QIOT can have twice as many entries. Compar@d T0 one US\ﬂg Q
two-bit counter, the PPC would make more m'\spred'\ot'\ons dueto US\\'\g]USI one bit, but it would make fewer mispmd'\eﬂons
due to collisions and so overall it would p@rform baetter (\T the bimodal had many mlspr@d'\et'\ons due to QO\HS\OT\S).

(¢) Provide a code example in which the gshare predictor described in class outperforms the
POWERA4’s almost equivalent predictor. (Ignore the selector.)

One difference between the PPC'S g\()b&\ pr@d'\etor and gSWAT@ is that in PPC the g\()b&\ mstory YQg1SIQY nas one bit
for each feteh group (not the same as 4 dispateh group), whether or not it includes a branch. Feteh groups can be as large
as Q‘\ght instructions, G'\SPQIQT\ groups can De as \Elfg@ as five instructions. When updm‘mg the GHR 2 feten group without
9 CT1 s treated like one Qontg;m'mg 9 not-taken branch.

consider the \OOP balow:

Five-iteration loop.

LOOP:

...

... seventeen instructions, none of them are CTIs ...
#

bneq rl1, r2, LOOP T TTTNTTTTNTTTTN ...
nop

Each iteration would span af least three groups ((It least three, hecause cache line boundaries migm foree Q()ﬂUgU-
ous instructions to be in SQPQY&IQ feten gTOUpS). Assume that the \OOP can be fetehed in QXQQUy three groups. FOr each
iteration three bits would be shifted into the GHR, one for each group. A pOSS'\D\Q GHR value used for predm‘mg the \OOP
pranch would be TnnTnnTnnTn, where n is the value inserted for groups not ho\dmg 9 branch (\t would QQIU‘QJ\y be a
7Qr0, Tor not UAKQT\). Since the GHR is eleven bits it can see three and p&ﬁ of a fourth iteration. Therefore the pf@(ﬂ@t()f
would not be able To tell whether it was in the fourth iteration (WT\QFQ The branch would be I&KQT\) or the fitth iteration
(where the branch would not be taken), in both cases the GHR would be nnTnnTnnTnn.

In a conventional gShQYQ pYQG\QtO\” the GHR would omy include braneh outcomes, and so Tor the code above it could
QQS'\\y d'\st'mgu'\sh the fourth and fifth iterations.

(d) How might the POWER4 designers justify the differences with the gshare predictor given the
lower performance in the example above?
The \og'\e 1o UPOMQ and recover the GHR m'\gm De s'\mp\ér.

