
LSU EE 4720 Homework 6 Solution Due: 28 April 2004

Problem 1: Read the Microprocessor Report article on the IBM PowerPC 970 (a.k.a. the G5),
used in a popular person computer. The article is available at
http://www.ece.lsu.edu/ee4720/s/mprppc.pdf. If accessing from outside the lsu.edu domain
provide user name ee4720 and the password given in class. Answer the following questions: (Please
read the entire article, additional questions might be asked in a future assignment.)

(a) One might infer from the second paragraph that deeper pipelines are used to inflate clock
frequencies solely for marketing purposes. Why do deeper pipelines allow higher clock frequencies?
Are there reasons other than marketing to do that?

The clock frequency is set to the highest value that will allow logic at the end of the critical path (from one pipeline
latch to another) to stabilize at the correct output (with a suitable margin). To increase the number of stages, logic that
spanned one stage is split into pieces (or redesigned as several pieces), (hopefully) reducing the length of the critical path
and so allowing for a higher clock frequency.

The marketing benefit of a deeper pipeline is the higher clock frequency, because unprepared buyers might have no
other way to estimate performance. Deeper pipelines (with their higher clock frequencies) actually do give higher perfor-
mance (as long as they are not too deep) because instructions are fetched at a faster rate (the higher clock frequency) and
because the number of stalls (in dynamically scheduled systems due to full a ROB because of scheduling constraints on
dependent instructions), while higher, is not high enough to eliminate the benefit of more frequent fetches. Therefore there
is more than just a marketing benefit to higher clock frequencies. (Deepening pipeline depth further will yield diminishing
returns as the pipeline latch overhead becomes a larger fraction of the clock period and as dependent instructions must
be scheduled further apart.)

(b) The article describes the PPC 970 as a 5-way superscalar processor, which is consistent with
the definition used in class. How could overzealous marketing people inflate that number using
features of the microarchitecture? Describe the specific feature. Why would that be overzealous?

The PPC can fetch eight instructions per cycle, so that could be the rationale for calling it an eight-way superscalar
machine. However there are at least two five instruction per cycle bottlenecks and so no program could execute at eight
instructions per cycle. Within the fetch pipeline instructions are formed into five-instruction groups. At most one group
per cycle can be dispatched to the issue queues, that’s one bottleneck. At most one group per cycle can commit, that’s
another bottleneck.

The following two problems are nearly identical to Spring 2003 Homework 6. The main differ-
ence is in the stages that are used. It is okay to peek at the solutions for hints, for best results leave
twelve hours between looking at those solutions (or solutions to similar problems) and completing
this assignment.

Problem 2: Show the execution of the MIPS code fragment below for three iterations on a four-
way dynamically machine using Method 3 (physical register file) with a 256-entry reorder buffer.
Though the machine is four-way, assume that there can be any number of write-backs per cycle. Use
Method 3 as described in the study guide at http://www.ece.lsu.edu/ee4720/guides/ds.pdf
with for the following differences:

• The FP multiply functional unit is three stages (M1, M2, and M3) with an initiation interval
of 1.

• Assume that the branch and branch target are always correctly predicted in IF so that when
the branch is in ID the predicted target is being fetched.

• There are an unlimited number of functional units.

http://www.ece.lsu.edu/ee4720/
http://www.ece.lsu.edu/ee4720/s/mprppc.pdf
http://www.ece.lsu.edu/ee4720/guides/ds.pdf


(a) Show the pipeline execution diagram, indicate where each instruction commits.
(b) Determine the CPI for a large number of iterations. (The method used for statically scheduled
systems will work here but will be very inconvenient. There is a much easier way to determine the
CPI.)

# Solution
# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LOOP:
ldc1 f0, 0(t1) IF ID Q RR EA ME WB C
mul f2, f2, f0 IF ID Q RR M1 M2 M3 WB C
bneq t1, t2 LOOP IF ID Q RR B WB C
addi t1, t1, 8 IF ID Q RR EX WB C

ldc1 f0, 0(t1) IF ID Q RR EA ME WB C
mul f2, f2, f0 IF ID Q RR M1 M2 M3 WB C
bneq t1, t2 LOOP IF ID Q RR B WB C
addi t1, t1, 8 IF ID Q RR EX WB C

ldc1 f0, 0(t1) IF ID Q RR EA ME WB C
mul f2, f2, f0 IF ID Q RR M1 M2 M3 WB C
bneq t1, t2 LOOP IF ID Q RR B WB C
addi t1, t1, 8 IF ID Q RR EX WB C
# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The CPI is 3
4 = 0.75. The hard way of computing the CPI is completing the pipeline execution diagram until

there is a repeating pattern. With a 256-entry reorder buffer that will take a long time. Don’t even try! The easy way
is to find the critical path through the program (not the hardware logic). The critical path must be through loop carried
dependencies, for this loop there are two, carried by t1 and f2. There is a single instruction per iteration that updates
t1 and that has a latency of zero, so the path through t1 can execute at a rate of one iteration per cycle, which is the
same as the fetch rate. The path through f2 is also through a single instruction, the multiply, however that has a latency
of 2 (takes 3 cycles to compute) and so the fastest it can execute is 3 cycles per iteration. The processor will initially fetch
one iteration per cycle and the addi instruction will be able to keep up, while the mul.d will fall behind. Eventually
the reorder buffer will fill, when that happens instructions will only be fetched when new space opens up, which will be
when the multiply instructions commit. Therefore fetch will drop to three cycles per iteration or a CPI of 3

4 .
Note that the load is not on the critical path. It does provide data for the multiply and it is dependent on data from

a previous iteration, t1, but it has its data ready before the multiply needs it. (This is only so because of the assumption
that the load always hits the cache. With cache misses the situation is more complex.)

The Spring 2003 version of this problem did not include the RR stage but the CPI in both cases is the same. Though
not in this case, deepening the pipeline (here with the RR stage) can have an impact on performance, for example, when
there are branch mispredictions.



Problem 3: The execution of a MIPS program on a one-way dynamically scheduled system is
shown below. The value written into the destination register is shown to the right of each in-
struction. Below the program are tables showing the contents of the ID Map, Commit Map, and
Physical Register File (PRF) at each cycle. The tables show initial values (before the first instruc-
tion is fetched), in the PRF table the right square bracket “]” indicates that the register is free.
(Otherwise the right square bracket shows when the register is freed.)
(a) Show where each instruction commits.
(b) Complete the ID and Commit Map tables.
(c) Complete the PRF table. Show the values and use a “[” to indicate when a register is removed
from the free list and a “]” to indicate when it is put back in the free list. Be sure to place these
in the correct cycle.

Solution shown below. In this solution the RR stage is not used because it was not shown in the original assignment.
(That’s not wrong, it just means that RR can overlap with Q, meaning that an instruction entering the Q stage can read
the physical register file in the same cycle if it’s ready to go.)

# Solution

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (Result)
lw r1, 0(r2) IF ID Q L1 L2 L2 WB C (0x100)
ori r1, r1, 6 IF ID Q EX WB C (0x106)
subi r2, r1, 2 IF ID Q EX WB C (0x104)
xor r1, r3, r3 IF ID Q EX WB C (0)
addi r2, r1, 0x700 IF ID Q EX WB C (0x700)
subi r1, r2, 4 IF ID Q EX WB C (0x6fc)

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ID Map
r1 96 99 98 95 93
r2 92 97 94
# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Commit Map
r1 96 99 98 95 93
r2 92 97 94
# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Physical Register File
99 112 ] [ 100 ]
98 583 ] [ 106 ]
97 174 ] [ 104 ]
96 309 ]
95 606 ] [ 0 ]
94 058 ] [ 700
93 285 ] [ 6fc
92 1234 ]
91 518 ]
90 207 ]
# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16


