LSUEE 4720 Homework 5 soltion Due: 21 April 2004
Problem 1: One question when extending an ISA from 32 to 64 bits is what to do about the shift
instructions. Because of the way that the shift instructions are encoded in MIPS two new shifts
(of each type) were added to MIPS-64.

(a) What do you think the MIPS-32 sra instruction should do in MIPS-647 Remember that an
implementation of MIPS-64 must run MIPS-32 code correctly. Please answer this question before
answering the next parts (but feel free to look at the questions). Hint: Any serious answer will get
full credit. A smart-alec answer will get full credit only if it’s particularly witty.

JUST shift the lower 32 bits, s‘\gn axtend US'\T\g DIt pOS\UOﬂ 31. Leave the mgh 32 it UﬂQh&ﬂde. For QX&mp\Q'.

My idea for how sra on a 64-bit machine should work.

Before $r1 = 0x8888 8888 8383 8888

sra $r1, $r1, 1

After $rl = 0x8888 8888 C444 4444 (Spaces added for clarity.)

(b) Give two reasons why the MIPS-32 sra (not srav) instruction could not be used for all right
arithmetic shifts needed in a 64-bit program.

1T can't specity a SNITT Of more than 32 Dits since the sa field 18 on\y Tive bits. 1T 1t sign axtended using DIT 63 as the
Sign it would not Work for 32-bit code, if it sign axtended on bit 31 it would not be appropriate for 64-bit code.

(¢) What are the new MIPS-64 shift right arithmetic instructions? Give the mnemonics.
DSRA and DSRA32.

(d) Why were two (as opposed to one) new shift instructions of each type added to MIPS-647
Because they use the existing Tive-bit sa fleld which can't specify a full range of Shifts.

Problem 2: Do the Problem 2 (a) through (d) from the Fall 2003 EE 4720 final exam (the one

http://www.ece.lsu.edu/ee4720/
http://www.ece.lsu.edu/ee4720/2003f/fe.pdf
http://www.ece.lsu.edu/ee4720/2003f/fe_sol.pdf

Problem 3: In the diagram below the we pipeline latches carry write enable signals for use in
floating point writeback. If the functional units were arranged differently the we pipeline latches
could be used as a reservation register (for detecting WF structural hazards).

”:.Ej ID EX MEM WB

4{% PG It Reg Fite PC] —‘
25:21 [
Addr _Data | rsv
(+4) 20360 Rdarpata |- v |- [| ALU
—{ Addr 1
v r s I
PC
format MM
immed
Add passes through
hadr four stages, mult
through six.
Mem (Decode dst dst et 9
Port \ dest. reg J
Dataj | IR IR IR IR
Out
FP Reg File WF
: [B [000|
15:01 Addr Data |-{ fsv Al L | | A2 L O A4 FPUF——

20:16 | Addr_Data || ftv -

M1 | | [[M2 [] oo | M6
— Addr . B M —
WE D In

L1 Decode
L{(Decode \ | ,ffd fd fd |- — fd
dest. reg T

000
000
o000

(a) Redraw the diagram with that arrangement. Hint: Try to use the we signal in the diagram
above for a reservation register. Figure out why that won’t work and come up with a solution.
See the next page.

(b) Suppose the ID stage has boxes ‘ uses FP ADD ‘ and ‘ uses FP MUL ‘ to detect which (if any)
floating point functional unit an instruction would use. Design the control logic to generate a stall
signal if there would be a write float structural hazard.

See the next page.
(¢) Add the connections necessary for a lwcl instruction. Include the connections needed to detect
a WF structural hazard (as was done for ADD and MUL in the previous part).

See the next page.

The multiply and add functional units are rearranged so that they finish “together” rather than start “together.”
In the original arrangement & particular we pipeline lateh is always a fixed distance from ID, but their distance from WF
depends upon which instruetion they carry. For example, the first we lateh is always one eyele from ID, If It is earrying
an add instruction it is four cycles from WF but if it i carrying a mul it is six cycles from WF. In a reservation regjster a
particular bit position deseribes an instruction a particular distance from WF and so the we pipeline latehes in the original
diagram cannot be used as & reservation register.

In the modified pipeline, below, the we is a fixed distance from WF and So 1t can, and s, used as a reservation
register. Instructions using the FP add check the second we pipeline lateh and if it holds a 1 an 1D stall signal is asserted,
otherwise the add (in particular, the we signal, register number (£d), and a control signal for the WF multiplexor) is
inserted into the pipeline. Note that the operands themselves enter whether or not 1D is stalled, if stalled then later at WF
the result will be ignored. Similar logic is shown for the 1wcl (and other FP loads) instruction. Note that instructions
using the multiply unit never eheck the reservation register, thaf is because they take the longest (we're ignoring divide)
and so no other instruction can use WF at the same time.

The diagram also shows the control logie for the WF multiplexor.

1= 3? ID EX MEM WB
——|| I:IPC nt Reg File lNPCW ALU
25:21 [
Addr Data - rsv |-
‘ +4 ’ 2016 Addr Dataf-f rtv f— ||| ALU
—f4 Addr DIn H— VD
PC
format IMM
immed
i_
Addr
Mem (Decode)
dst dst dst
Port _dest. reg /
8aia R IR IR IR WF
4 — . — — —
FP Reg File

————————
150 P ddr Dataf sv
20:16 faddr Data -l ftv
B}

Addr
WE DiIn "
— 1% XW XW XW XW XW
we we) >tH{we wef——5 >+fwe we we
(Decode) | | N fd } fd fd 1 fd fd fd
dest. reg ‘ — — T

4 uses FP mul k
uses FP add

islsl

%Stall
ID

FP load

