
06-1 06-1MIPS Implementation

Material from Chapter 3 of H&P (for DLX).

Material from Chapter 6 of P&H (for MIPS).

Outline: (In this set.)

Unpipelined DLX Implementation. (Diagram only.)

Pipelined DLX and MIPS Implementations: Hardware, notation, hazards.

Dependency Definitions.

Data Hazards: Definitions, stalling, bypassing.

Control Hazards: Squashing, one-cycle implementation.

Outline: (Covered in class but not yet in set.)

Operation of nonpipelined implementation, elegance and power of pipelined implementation.
(See text.)

Computation of CPI for program executing a loop.

06-1 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-1

06-2 06-2Unpipelined Implementation

Instruction fetch
Instruction decode/

register fetch

Execute/
address

calculation

Memory
access

Write
back

B

PC

4

ALU

16 32

Add

Data
memory

Registers

Sign
extend

Instruction
memory

M
u
x

M
u
x

M
u
x

M
u
x

Zero?
Branch

taken
Cond

NPC

lmm

ALU
output

IR
A

LMD

FIGURE 3.1 The implementation of the DLX datapath allows every instruction to be executed in four or five clock
cycles.

06-2 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-2

06-3 06-3Pipelined DLX Implementation

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

Note: diagram omits connections for some instructions.

06-3 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-3

06-4 06-4Pipelined MIPS Implementation

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC

Note: diagram omits connections for some instructions.

06-4 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-4

06-5 06-5Pipeline Details

Pipeline Segments a.k.a. Pipeline Stages

Divide pipeline into segments.

Each segment occupied by at most one instruction.

At any time, different segments can be occupied by different instructions.

Segments given names: IF, ID, EX, MEM, WB

Sometimes MEM shortened to ME.

06-5 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-5

06-6 06-6

Pipeline Registers a.k.a. Pipeline Latches

Registers separating pipeline segments.

Written at end of each cycle.

To emphasize role, drawn as part of dividing bars.

Registers named using pair of segment names and register name.

For example, IF/ID.IR, ID/EX.IR, ID/EX.A (used in text, notes).

if id ir, id ex ir, id ex rs val (used in Verilog code).

06-6 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-6

06-7 06-7Pipeline Execution Diagram

Pipeline Execution Diagram

Diagram showing the pipeline segments that instructions occupy as they execute.

Time on horizontal axis, instructions on vertical axis.

Diagram shows where instruction is at a particular time.

Cycle 0 1 2 3 4 5 6
add r1, r2, r3 IF ID EX MEM WB
and r4, r5, r6 IF ID EX MEM WB
lw r7, 8(r9) IF ID EX MEM WB

A vertical slice (e.g., at cycle 3) shows processor activity at that time.

In such a slice a segment should appear at most once . . .

. . . if it appears more than once execution not correct . . .

. . . since a segment can only execute one instruction at a time.

06-7 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-7

06-8 06-8Instruction Decoding and Pipeline Control

Pipeline Control

Setting control inputs to devices including . . .

. . . multiplexor inputs . . .

. . . function for ALU . . .

. . . operation for memory . . .

. . . whether to clock each register . . .

. . . et cetera.

06-8 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-8

06-9 06-9

Options for controlling pipeline:

• Decode in ID
Determine settings in ID, pass settings along in pipeline latches.

• Decode in Each Stage
Pass opcode portions of instruction along.
Decoding performed as needed.

Real systems decode in ID.

For clarity, diagrams misleadingly imply decoding in stage needed . . .

. . . by passing entire instruction along.

Example given later in this set.

06-9 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-9

06-10 06-10Dependencies and Hazards

Remember

Operands read from registers in ID. . .

. . . and results written to registers in WB.

Consider the following incorrect execution:

! Cycle 0 1 2 3 4 5 6 7
add r1, r2, r3 IF ID EX MEM WB
sub r4, r1, r5 IF ID EX MEM WB
and r6, r1, r8 IF ID EX MEM WB
xor r9, r4, r11 IF ID EX MEM WB

Execution incorrect because . . .

. . . sub reads r1 before add writes (or even finishes computing) r1, . . .

. . . and reads r1 before add writes r1, and . . .

. . . xor reads r4 before sub writes r4.

06-10 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-10

06-11 06-11Dependencies and Hazards

Incorrect execution due to. . .
. . . dependencies in program. . .

. . . and hazards in hardware (pipeline).

Incorrect execution above is the “fault” of the hardware. . .
. . . because the ISA does not forbid dependencies.

Dependency:

A relationship between two instructions . . .

. . . indicating that their execution should be (or appear to be) in program order.

Hazard:

A potential execution problem in an implementation due to overlapping instruction execution.

There are several kinds of dependencies and hazards.

For each kind of dependence there is a corresponding kind of hazard.

06-11 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-11

06-12 06-12Dependencies

Dependency:

A relationship between two instructions . . .

. . . indicating that their execution should be (or appear to be) in program order.

If there is a dependency between instruction A and instruction B . . .

. . . and B follows A in program order . . .

. . . then B is said to be dependent on A.

If B is dependent on A then A should appear to execute before B.

Dependency Types:

• True, Data, or Flow Dependence (Three different terms used for the same concept.)

• Name Dependence

• Control Dependence

06-12 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-12

06-13 06-13Data Dependence

Data Dependence: (a.k.a., True and Flow Dependence)
A dependence between two instructions . . .

. . . indicating data needed by the second is produced by the first.

Example:

add r1, r2, r3
sub r4, r1, r5
and r6, r4, r7

The sub is dependent on add (via r1).

The and is dependent on sub (via r4).

The and is dependent add (via sub).

Execution may be incorrect if . . .

. . . a program having a data dependence . . .

. . . is run on a processor having an uncorrected RAW hazard.

06-13 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-13

06-14 06-14Name Dependencies

There are two kinds: antidependence and output dependence.

Antidependence:

A dependence between two instructions . . .

. . . indicating a value written by the second . . .

. . . that the first instruction reads.

Antidependence Example

add r1, r2, r3
sub r2, r4, r5

sub is antidependent on the add.

Execution may be incorrect if . . .

. . . a program having an antidependence . . .

. . . is run on a processor having an uncorrected WAR hazard.

06-14 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-14

06-15 06-15

Output Dependence:

A dependence between two instructions . . .

. . . indicating that both instructions write the same location . . .

. . . (register or memory address).

Output Dependence Example

add r1, r2, r3
sub r1, r4, r5

The sub is output dependent on add.

Execution may be incorrect if . . .

. . . a program having an output dependence . . .

. . . is run on a processor having an uncorrected WAW hazard.

06-15 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-15

06-16 06-16

Control Dependence:

A dependence between a branch instruction and a second instruction . . .

. . . indicating that whether the second instruction executes . . .

. . . depends on the outcome of the branch.

beq $1, $0 SKIP # Delayed branch
nop
add $2, $3, $4
SKIP:
sub $5, $6, $7

The add is control dependent on the beq.

The sub is not control dependent on the beq.

06-16 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-16

06-17 06-17Pipeline Hazards

Hazard:

A potential execution problem in an implementation due to overlapping instruction execution.

Interlock:

Hardware that avoids hazards by stalling certain instructions when necessary.

Hazard Types:

Structural Hazard:

Needed resource currently busy.

Data Hazard:

Needed value not yet available or overwritten.

Control Hazard:

Needed instruction not yet available or wrong instruction executing.

06-17 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-17

06-18 06-18Data Hazards

Identified by acronym indicating correct operation.

• RAW: Read after write, akin to data dependency.

• WAR: Write after read, akin to anti dependency.

• WAW: Write after write, akin to output dependency.

DLX and MIPS implementations above only subject to RAW hazards.

RAR not a hazard since read order irrelevant (without an intervening write).

06-18 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-18

06-19 06-19Interlocks

When threatened by a hazard:

• Stall (Pause a part of the pipeline.)
Stalling avoids overlap that would cause error.

This does slow things down.

• Add hardware to avoid the hazards.
Details of hardware depend on hazard and pipeline.

Several will be covered.

06-19 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-19

06-20 06-20Structural Hazards

Cause: two instructions simultaneously need one resource.

Solutions:

Stall.

Duplicate resource.

Pipelines in this section do not have structural hazards.

Covered in more detail with floating-point instructions.

06-20 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-20

06-21 06-21Data Hazards

HP Chapter-3 DLX and MIPS Subject to RAW Hazards.

Consider the following incorrect execution of code containing data dependencies.

! Cycle 0 1 2 3 4 5 6 7
add r1, r2, r3 IF ID EX MEM WB
sub r4, r1, r5 IF ID EX MEM WB
and r6, r1, r8 IF ID EX MEM WB
xor r9, r4, r11 IF ID EX MEM WB

Execution incorrect because . . .

. . . sub reads r1 before add writes (or even finishes computing) r1, . . .

. . . and reads r1 before add writes r1, and . . .

. . . xor reads r4 before sub writes r4.

Problem fixed by stalling the pipeline.

06-21 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-21

06-22 06-22

Stall:

To pause execution in a pipeline from IF up to a certain stage.

With stalls, code can execute correctly:

For code on previous slide, stall until data in register.

! Cycle 0 1 2 3 4 5 6 7 8 9 10
add r1, r2, r3 IF ID EX MEM WB
sub r4, r1, r5 IF ID -----> EX MEM WB
and r6, r1, r8 IF -----> ID EX MEM WB
xor r9, r4, r11 IF ID -> EX MEM WB

Arrow shows that instructions stalled.

Stall creates a bubble, segments without valid instructions, in the pipeline.

With bubbles present, CPI is greater than its ideal value of 1.

06-22 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-22

06-23 06-23

Stall Implementation

Stall implemented by asserting a hold signal . . .

. . . which inserts a nop (or equivalent) after the stalling instruction and . . .

. . . disables clocking of pipeline latches before the stalling instruction.

! Cycle 0 1 2 3 4 5 6 7 8 9 10
add r1, r2, r3 IF ID EX MEM WB
sub r4, r1, r5 IF ID -----> EX MEM WB
and r6, r1, r8 IF -----> ID EX MEM WB
xor r9, r4, r11 IF ID -> EX MEM WB

During cycle 3, a nop is in EX.

During cycle 4, a nop is in EX and MEM.

The two adjacent nops are called a bubble . . .

. . . they move through the pipeline with the other instructions.

A third nop is in EX in cycle 7.

06-23 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-23

06-24 06-24Bypassing

Some stalls are avoidable.

Consider again:

! Cycle 0 1 2 3 4 5 6 7 8 9 10
add r1, r2, r3 IF ID EX MEM WB
sub r4, r1, r5 IF ID EX MEM WB
and r6, r1, r8 IF ID EX MEM WB
xor r9, r4, r11 IF ID EX MEM WB

Note that the new value of r1 needed by sub . . .

. . . has been computed at the end of cycle 2 . . .

. . . and isn’t really needed until the beginning of the next cycle, 3.

Execution was incorrect because the value had to go around the pipeline to ID.

Why not provide a shortcut?

Why not call a shortcut a bypass or forwarding path?

06-24 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-24

06-25 06-25Non-Bypassed MIPS

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC

06-25 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-25

06-26 06-26Bypassed MIPS

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC

06-26 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-26

06-27 06-27MIPS Implementation With Some Forwarding Paths:

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC

! Cycle 0 1 2 3 4 5 6 7 8 9 10
add r1, r2, r3 IF ID EX MEM WB
sub r4, r1, r5 IF ID EX MEM WB
and r6, r1, r8 IF ID EX MEM WB
xor r9, r4, r11 IF ID EX MEM WB

It works!

06-27 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-27

06-28 06-28MIPS Implementation With Some Forwarding Paths:

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC
Not all stalls are avoidable.

! Cycle 0 1 2 3 4 5 6 7 8 9 10
lw r1, 0(r2) IF ID EX MEM WB
add r1, r1, r4 IF ID -> EX MEM WB
sw 4(r2), r1 IF -> ID -----> EX MEM WB
addi r2, r2, 8 IF -----> ID EX MEM WB

Stall due to lw could not be avoided (data not available in cycle 3).

Stall in cycles 5 and 6 could be avoided with a new forwarding path.

06-28 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-28

06-29 06-29Bypass Control Logic for Lower ALU Mux

Start with logic for rd, show path of Mux logic.

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

RD RD

Mux
1

RD
Decode

RD

?

06-29 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-29

06-30 06-30Logic to determine rd for register file.

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

= Type R

11..15

16..20

31

0

= Link CTI

= Type I
ALU

RD RD

= Non-link
CTI

= Load

=Store

RD

00

01

10

11
00

01

10

11

MSB

LSB

(Not Connected)

06-30 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-30

06-31 06-31Bypass Control Logic for Lower ALU Mux

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

= Type R

=’
11..15

16..20

31

0

= Link CTI

= Type I
ALU

RD RD

=’
11..15

B

MEM

WB

IMM

LSB

MSB

2

Mux

= Non-link
CTI

= Load

=Store

RD

00

01

10

11
00

01

10

11

MSB

LSB

(Not Connected)

06-31 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-31

06-32 06-32Bypass Control Logic

Control logic not minimized (for clarity).

Control Logic Generating ID/EX.RD.

Present in previous implementations, just not shown.

Determines which register gets written based on instruction.

Instruction categories used in boxes such as = Load (some instructions omitted):

= Non-link CTI : branches and jumps except linking jumps (jal and jalr).

= Store : All store instructions.

= Type I ALU : All Type I ALU instructions.

= Load : All load instructions.

= Type R : All Type R instructions.

= Link CTI : jal and jalr.

06-32 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-32

06-33 06-33Bypass Control Logic, Continued

Logic Generating ID/EX.MUX.

=′ box determines if two register numbers are equal.

Register number zero is not equal register zero, nor any other register.

(The bypassed zero value might not be zero.)

06-33 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-33

06-34 06-34Control Hazards

Cause: on taken CTI several wrong instructions fetched.

Consider:

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC

06-34 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-34

06-35 06-35

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC

Example of incorrect execution

!I Adr Cycle 0 1 2 3 4 5 6 7 8
0x100 bgtz r4, TARGET IF ID EX MEM WB
0x104 sub r4, r2, r5 IF ID EX MEM WB
0x108 sw 0(r2), r1 IF ID EX MEM WB
0x10c and r6, r1, r8 IF ID EX MEM WB
0x110 or r12, r13, r14
...
TARGET: ! TARGET = 0x200
0x200 xor r9, r4, r11 IF ID EX MEM WB

Branch is taken yet two instructions past delay slot (sub) complete execution.

Branch target finally fetched in cycle 4.

Problem: Two instructions following delay slot.

06-35 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-35

06-36 06-36

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC

Handling Instructions Following a Taken Branch Delay Slot

Option 1: Don’t fetch them.

Possible (with pipelining) because . . .

. . . fetch starts (sw in cycle 2) . . .

. . . after branch decoded.

(Would be impossible . . .

. . . for non-delayed branch.)

!I Adr Cycle 0 1 2 3 4 5 6 7 8
0x100 bgtz r4, TARGET IF ID EX MEM WB
0x104 sub r4, r2, r5 IF ID EX MEM WB
0x108 sw 0(r2), r1 IF ID EX MEM WB
0x10c and r6, r1, r8 IF ID EX MEM WB
0x110 or r12, r13, r14
...
TARGET: ! TARGET = 0x200
0x200 xor r9, r4, r11 IF ID EX MEM WB

06-36 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-36

06-37 06-37

Handling Instructions Following a Taken Branch

Option 2: Fetch them, but squash (stop) them in a later stage.

This will work if instructions squashed . . .

. . . before modifying architecturally visible storage (registers and memory).

Memory modified in MEM stage and registers modified in WB stage . . .

. . . so instructions must be stopped before beginning of MEM stage.

Can we do it? Depends depends where branch instruction is.

In example, need to squash sw before cycle 5.

During cycle 3 bgtz in MEM . . .

. . . it has been decoded and the branch condition is available . . .

. . . so we know whether the branch is taken . . .

. . . so sw can easily be squashed before cycle 5.

Option 2 will be used.

06-37 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-37

06-38 06-38Instruction Squashing

In-Flight Instruction::

An instruction in the execution pipeline.

Later in the semester a more specific definition will be used.

Squashing:: [an instruction]
preventing an in-flight instruction . . .

. . . from writing registers, memory or any other visible storage.

Squashing also called: nulling, abandoning, and cancelling..

Like an insect, a squashed instruction is still there (in most cases) but can do no harm.

06-38 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-38

06-39 06-39Squashing Instruction in Example DLX Implementation

Two ways to squash.

• Prevent it from writing architecturally visible storage.

Replace destination register control bits with zero. (Writing zero doesn’t change anything.)

Set memory control bits (not shown so far) for no operation.

• Change Operation to nop.

Would require changing many control bits.

Squashing shown that way here for brevity.

Illustrated by placing a nop in IR.

Why not replace squashed instructions with target instructions?

Because there is no straightforward and inexpensive way . . .

. . . to get the instructions where and when they are needed.

(Curvysideways and expensive techniques covered in Chapter 4.)

06-39 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-39

06-40 06-40

MIPS implementation used so far.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC

06-40 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-40

06-41 06-41

Example of correct execution

!I Adr Cycle 0 1 2 3 4 5 6 7 8
0x100 bgtz r4, TARGET IF ID EX MEM WB
0x104 sub r4, r2, r5 IF ID EX MEM WB
0x108 sw 0(r2), r1 IF IDx
0x10c and r6, r1, r8 IFx
0x110 or r12, r13, r14
...
TARGET: ! TARGET = 0x200
0x200 xor r9, r4, r11 IF ID EX MEM WB

Branch outcome known at end of cycle 2 . . .

. . . wait for cycle 3 when doomed instructions (sw and and) in flight . . .

. . . and squash them so in cycle 4 they act like nops.

Two cycles (1, 2, and 3), are lost.

Two cycles called a branch penalty.

Two cycles is alot of cycles, is there something we can do?

06-41 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-41

06-42 06-42Yes: Zero-Cycle Branch Delay Implementation

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

Compute branch target address in ID stage.

06-42 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-42

06-43 06-43Zero-Cycle Branch Delay Implementation

Compute branch target and condition in ID stage.

Workable because register values not needed to compute branch address and . . .

. . . branch condition can be computed quickly.

Now how fast will code run?

!I Adr Cycle 0 1 2 3 4 5 6 7 8
0x100 bgtz r4, TARGET IF ID EX MEM WB
0x104 sub r4, r2, r5 IF ID EX MEM WB
0x108 sw 0(r2), r1
0x10c and r6, r1, r8
0x110 or r12, r13, r14
...
TARGET: ! TARGET = 0x200
0x200 xor r9, r4, r11 IF ID EX MEM WB

No penalty, not a cycle wasted!!

06-43 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-43

06-44 06-44Non-Bypassed MIPS

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC

06-44 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-44

06-45 06-45Bypassed MIPS

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

=
=0
<0

E
Z
N

NPC

06-45 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-45

06-46 06-46ID Branch MIPS

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

06-46 EE 4720 Lecture Transparency. Formatted 9:34, 17 October 2003 from lsli06. 06-46

