LSUEE 4720 Homework 4 sowtion Due: 14 November 2003

Problem 1: Design the control logic for the store value multiplexor (the one that writes pipeline
latch ex_mem_rtv). The control logic must be in the ID stage. Hint: This is a fairly easy problem.

Changes Tor solution shown in red. Notice that the control logic doesn't chack whather the instruetion is a store. If
it's NOT & store the store value multiplexor is not used and $o it doesn't matter NOw IT's set.

ALU
25:21

I

Addr Data - rsv

Mem
20:16 I

D v
Port

CD
B N Data DatajHMD
E: - ——H v P, ou
format T

Addr Dataf-§ rtv ALU

hﬂj o e MEM we
— U

4

PC

F
+
—
@LIIMM
— v

—amux
Addr
Mem (Decode
dst dst dst
Port \ dest. reg)
Datag §|R IR IR IR
Out

oo Th [F

- --"0mem

1rtv

O
2 wb

http://www.ece.lsu.edu/ee4720/

Problem 2: One problem with a post-increment load is storing the incremented base register
value into a register file with one write port. Suppose a post-increment, register-indirect load were
added to MIPS and implemented in the pipeline on the next page. This post-increment load does
not use an offset, instead the effective address is just the contents of the rs register.

One option for storing the incremented base register value is to stall the following instruction
and write back the value when the bubble reaches WB. We would like to avoid stalls if we have
to, so for this problem design hardware that will use the WB stage of the instruction before [sic]
or after the post-increment load if one of those instructions does not perform a writeback. For
example:

bneq $s0, $s1, SKIP (Not taken)
lw $t1, ($t2)+
j TARG

add $s3, $s1, $s2
lw $t1, ($t2)+
sub $s4, $s5, $s6

The first post-increment load could writeback when either the bneq or the j were in the WB
stage since neither performs writeback. The second post-increment load would have to insert a
stall.

(a) Show the hardware needed to implement the post-increment load in this way.

e Remember that this load does not have an offset.

e Usea box to identify post-increment loads (input is opcode, output is 1 if it is a
post-increment load, 0 otherwise).

e A stall signal is available in each stage; if the signal is asserted the instruction in that and
preceding stages will stall and a nop instruction will move into the next stage (for each cycle
hold is asserted).

e Show any new paths added for the incremented value, perhaps to the register file write port
(which still has one write port).

e Add any new paths needed to get the correct register number to the register file write port.
e Ignore bypassing of the incremented address to other instructions.

e Show the added control logic, which does not have to be in the ID stage. (In fact it would
be difficult to put all of control logic for this instruction in the ID stage.)

e Last but not least, a design goal is low cost, so add as little hardware as necessary to
implement the instruction.

(b) If you're like most people, you didn’t worry about precise exceptions when solving the previous
part. Explain how the need for precise exceptions can complicate the design.

IT the post-'mer@m@nt raises an QXQQPUOH in Mem then it m'\gm De T00 late 1o pYQVQﬂt \NT'\Uﬂg back the ineremented
address i it's us‘mg the prV'\OUS instruction. Another case is the post—'mer@m@nt 10ad Wr'\t‘mg back usmg the next instrue-
tion. 1If the next instruetion raises an QXQQPUOI\ one would have To make sure that dQSp'\'EQ b@mg squashed it still wrote
Dack the incremented address.

Chang@s shown in red. In this solution the ALV computes the incremented address, a mump\@xor is added so the
unineremented address can be sent 1o the mernory's address input. An alternative solution would have an adder dedicated
10 incrementing the address; with sueh an adder one would not need the mu\t'\p\@xor at the memory address ‘mput.

The control logic, in EX, generates three signals, next, prev, and stall EX. Signals next and prev are putin
p'\pe\mé latehes, stall EX £0es 1o control \og’\e (T\OI Sh()Wﬂ) to stall EX, ID, and IF. The prev signal sets the p'\pe\me
10 write back the incremented address in the WB of next pf‘é\l'\OUS instruction (Wm@h i in the next S‘E&g‘é), thig is done Dy
h&Viﬂg the incremented address and the rs field SK\p ahead one stage. The next signal nas the 8 Tield and ineremented
address hold back one QyQ\Q by routmg them through an extra set of [Qg\SiQYS‘ ALU, 18, and n in the MEM St&g@.

For lower cost, the ALU register added to the Mem stage can De eliminated. Instead, one could use an enable S'\gﬁ‘c‘n\
1o hold the value in the M@m/WB.ALU laten.

MEM WB

1= T‘ET D EX i
i 0
Lﬁ ALU ALU
I I 1
v NPC NPCW Lo rsv 1;
25:21
Addr Dataff rsv |- Mem
20:1 1 1
+4 0100 pddr Dataf v |- L ALU Port
o Addr
. —4 Addr Din H— = Data Data IMD
v In__Out
PC f
ormat
rs rs s
Addr 25:21
1
1
Mem (Decode) dst ast L L . s
Port pata \ dest. reg J 0
IR IR IR = IR
Qut Ll =
1 =PIL I pil pil f—
n n —
p
] next
;/I prev
stall
_D EX To control

Problem 3: Answer these questions about interrupts in the PowerPC, as described in the PowerPC
Programming Environments Manual, linked to

(a) Listed below are the three types of interrupts using the terminology presented in class. What
are the equivalent terms used for the PowerPC.
e Hardware Interrupt
Asynehronous Exception
e Exception
Synemonous EXQQPUO\'\
e Trap
Trap?

(b) In which register is the return address saved?
It 1S saved in SSRO (save restore register 0).

http://www.ece.lsu.edu/ee4720/reference.html

