
LSU EE 4720 Homework 4 Solution Due: 14 November 2003

Problem 1: Design the control logic for the store value multiplexor (the one that writes pipeline
latch ex_mem_rtv). The control logic must be in the ID stage. Hint: This is a fairly easy problem.

Changes for solution shown in red. Notice that the control logic doesn’t check whether the instruction is a store. If
it’s not a store the store value multiplexor is not used and so it doesn’t matter how it’s set.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

15:0

=’ =’

0 mem

1 rtv

2 wb

20:16

lsb

msb

mux

1

http://www.ece.lsu.edu/ee4720/

Problem 2: One problem with a post-increment load is storing the incremented base register
value into a register file with one write port. Suppose a post-increment, register-indirect load were
added to MIPS and implemented in the pipeline on the next page. This post-increment load does
not use an offset, instead the effective address is just the contents of the rs register.

One option for storing the incremented base register value is to stall the following instruction
and write back the value when the bubble reaches WB. We would like to avoid stalls if we have
to, so for this problem design hardware that will use the WB stage of the instruction before [sic]
or after the post-increment load if one of those instructions does not perform a writeback. For
example:

bneq $s0, $s1, SKIP (Not taken)
lw $t1, ($t2)+
j TARG

add $s3, $s1, $s2
lw $t1, ($t2)+
sub $s4, $s5, $s6

The first post-increment load could writeback when either the bneq or the j were in the WB
stage since neither performs writeback. The second post-increment load would have to insert a
stall.
(a) Show the hardware needed to implement the post-increment load in this way.

• Remember that this load does not have an offset.

• Use a =PIL box to identify post-increment loads (input is opcode, output is 1 if it is a
post-increment load, 0 otherwise).

• A stall signal is available in each stage; if the signal is asserted the instruction in that and
preceding stages will stall and a nop instruction will move into the next stage (for each cycle
hold is asserted).

• Show any new paths added for the incremented value, perhaps to the register file write port
(which still has one write port).

• Add any new paths needed to get the correct register number to the register file write port.

• Ignore bypassing of the incremented address to other instructions.

• Show the added control logic, which does not have to be in the ID stage. (In fact it would
be difficult to put all of control logic for this instruction in the ID stage.)

• Last but not least, a design goal is low cost, so add as little hardware as necessary to
implement the instruction.

(b) If you’re like most people, you didn’t worry about precise exceptions when solving the previous
part. Explain how the need for precise exceptions can complicate the design.

If the post-increment raises an exception in Mem then it might be too late to prevent writing back the incremented
address if it’s using the previous instruction. Another case is the post-increment load writing back using the next instruc-
tion. If the next instruction raises an exception one would have to make sure that despite being squashed it still wrote
back the incremented address.

2

Changes shown in red. In this solution the ALU computes the incremented address, a multiplexor is added so the
unincremented address can be sent to the memory’s address input. An alternative solution would have an adder dedicated
to incrementing the address; with such an adder one would not need the multiplexor at the memory address input.

The control logic, in EX, generates three signals, next, prev, and stall EX. Signals next and prev are put in
pipeline latches, stall EX goes to control logic (not shown) to stall EX, ID, and IF. The prev signal sets the pipeline
to write back the incremented address in the WB of next previous instruction (which is in the next stage), this is done by
having the incremented address and the rs field skip ahead one stage. The next signal has the rs field and incremented
address hold back one cycle by routing them through an extra set of registers, ALU, rs, and n in the MEM stage.

For lower cost, the ALU register added to the Mem stage can be eliminated. Instead, one could use an enable signal
to hold the value in the Mem/WB.ALU latch.

format
immed

IR

Addr
25:21

20:16

IR

IF ID EX
WBMEM

IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

rtv

dst dst
Decode
dest. reg

NPC

15:0

IR

ALU

MD

dst

Addr

Data
In

Mem
Port

Data
Out

rsv

rs rs

ALU

rs

nn

p

25:21

=0 =0

prev

next

stall
EX

=PIL pil pil

0

1
1

0

1

00

1

1

0

To control

3

Problem 3: Answer these questions about interrupts in the PowerPC, as described in the PowerPC
Programming Environments Manual, linked to
http://www.ece.lsu.edu/ee4720/reference.html.
(a) Listed below are the three types of interrupts using the terminology presented in class. What
are the equivalent terms used for the PowerPC.

• Hardware Interrupt
Asynchronous Exception

• Exception
Synchronous Exception

• Trap
Trap?

(b) In which register is the return address saved?
It is saved in SSR0 (save/restore register 0).

4

http://www.ece.lsu.edu/ee4720/reference.html

