
LSU EE 4720 Dynamic Scheduling Study Guide Spring 2003

David Koppelman

1.1 Introduction
The material on dynamic scheduling is not covered in detail in the text, which is unfortunate since as

of this writing most processors are statically scheduled. This study guide provides a summary of dynamic
scheduling and a guide to sample problems from old homeworks and exams. (The solutions are sometimes
detailed.)

In a statically scheduled processor instructions start execution in program order while in a dynamically
scheduled processor instructions can start execution out of order. Statically scheduled systems are much
simpler since instructions march through the pipeline in step, with bubbles (gaps) inserted where necessary.
A shortcoming is that an instruction that must wait blocks all of the instructions behind it. Those instructions
with dependencies on the waiting instruction would have to wait anyway but there is no reason to block
other instructions, other than hardware cost. In a dynamically scheduled system the only instructions that
normally must wait are those for which input operands are not ready. (There are other reasons for waiting,
for example, the needed functional unit is busy.) Dynamically scheduled processors are far more costly but
achieve better performance than static scheduling on superscalar processors, especially when loads can take
more than a cycle or two (due to a cache miss, covered later).

As of this writing most processors are dynamically scheduled. This includes the Pentium III and Pentium
4, Alpha 21264, MIPS R10000, PowerPC 620, and HP-PA 8000, and the later versions of these processors.
Two exceptions are the Sun UltraSparc III and the Intel Itanium 2, which are statically scheduled.

1.2 Summary of Dynamic Scheduling Method 3
In class three methods of dynamic scheduling were mentioned, but (in Spring 2003) only one was covered

in detail, Method 3. In Method 3 values are stored in a physical register file and physical register numbers
are used to re-name registers. This is the only method covered in the Spring 2003 semester and so Spring
2003 final exam questions are unlikely to use the other methods. The following is a brief description of
Method 3. First, activities in each stage are covered, then the tables and other elements are described. The
descriptions below refer to the following illustration:

25:21

20:16

rsPR

ID:dst

ID Reg. Map

IR

NPC

+4

PC

Mem
Port

Addr

Data

PC

P
C

ID
:dst

ID
:S

t: C
,X

0,0

WB:ROB #

WB:C,X
Addr

D In

R
eo

rd
er

 B
uf

fe
r

C:dstControl

Control

ROB #

Op, IQ

Common Data Bus (CDB)

ID: ROB #
tail

head WB

C

IDIF

rtPR

F
re

e
Li

st

ID
:dstP

R
ID

:dstP
R

C:dstPR

C

Instr. Queue

Addr

Addr

Data

Data

Addr
D In

rsPR

rtPR

rsVal

rtVal

Physical
Register File

Op, dstPR, ROB#

OutIn

Scheduler

Q EX

dstPR

dstVal.

WB

Q

Q

WB

Decode
dest. reg

ID
:incm

b

Addr

Addr

Data

Data

Addr
D In
D Out

ID:dst

ID:incmb
ID:dstPR

Addr

D In

C Reg. Map

Data

C:incmb

dstPR

ID

R
ec

ov
er

1.2.1 Stage: IF, Instruction Fetch

This occurs strictly in program order. The maximum number of instructions that can be fetched per
cycle is equal to the decode width. (An x-way superscalar processor has a decode width of x.)

1

http://www.ece.lsu.edu/ee4720/

For simplicity IF is shown using the same hardware as the one-way statically scheduled processor. In real
dynamically scheduled superscalar systems additional hardware is needed for branch and target prediction
and for shifting and masking data retrieved from the memory port (really a cache port).

1.2.2 Stage: ID, Instruction Decode

This occurs strictly in program order. The maximum number of instructions that can be decoded per
cycle is equal to the decode width. The following is done:

An entry for the instruction is placed in the reorder buffer with the following information: The address
of the instruction (PC); two status bits C, complete, and X, raised an exception; the architected destination
register number, dst, (e.g., t1, s2); the physical destination register, dstPR, (e.g., p90,p103); and the
incumbent physical register number, incumb.

The incumbent is the physical register holding the old value of the destination register. For example,
consider the sub instruction in the example below. The physical registers used for the destinations are shown
in the comments. Physical register 92 is removed from the free list and will be used for t1, the architected
register holding the result of the subtract. The “old” value of t1 is in physical register 90, so 90 is the
incumbent.
add t1, t2, t3 # t1 to be stored in physical register 90
or t5, t1, t7 # t5 to be stored in physical register 91
sub t1, t8, t5 # t1 to be stored in physical register 92

Also in DI, the architected source register numbers are translated into physical registers using the ID
register map. The source physical register numbers are labeled rsPR and rtPR in the diagram.

A physical register is removed from the free list and assigned to the destination. This new physical
register is labeled dstPR on the diagram.

The new physical register is written into the ID map (where following instructions will find it) and the
incumbent, incmb, is retrieved. (The incumbent is overwritten by the new physical register number.) As
described above the incumbent is written into the reorder buffer.

Control determines which instruction queue to put the instruction in (IQ in the diagram) and which
operation to perform (Op). (The diagram only shows one instruction queue.) The reorder buffer provides a
unique number associated with the new ROB entry, ROB #, this is used during WB.

1.2.3 Stage: Q, Instruction Queue

The Q stage can refer to two things: being placed in the instruction queue, QI, or being removed from
it QO. It is used both ways in the solutions (just Q) and so both are correct in answers. QI occurs strictly in
program order, QO does not necessarily occur in program order.

An instruction is placed in the instruction queue, QI, in the cycle after ID (unless there is a stall, which
is very rare in the homework and exam problems).

An instruction is removed from the queue, QO, when it is ready to execute (its operands will be available
in the next cycle). When it is removed from the queue it reads physical register values (rsVal, rtVal) from
the physical register file.

After Q the instruction moves to a functional unit. The following functional units are common in the
homework and exams: EX, integer and logic operations; B, branch resolution; L1 L2 load/store unit (discussed
further below), A1 A2... floating-point add, M1 M2... floating-point multiply.

1.2.4 Stages: EX, A1, M1, etc. Arithmetic and Logical Functional Units

These work like their statically scheduled counterparts. By default a complete set of bypass connections
is assumed. After exiting a functional unit the instructions go to writeback, WB.

1.2.5 Stage: B, Branch Resolution Functional Unit

This is used to determine if a branch is taken or not (the outcome). See WB for more on recovery.

2

1.2.6 Stages: L1, L2, Load/Store Unit

In the L1 step the effective address of the load or store is computed. For loads L2 indicates that the
load/store queue and, if necessary, the cache is being checked for the data. If the data is found the next
segment is WB, otherwise no segment is shown until the data arrives at which time L2 is shown again. Stores
first write their data into the load/store queue (L2) where following loads can read it. When they commit
the data is written to the cache.

In the example below the lw hits the cache and lh misses the cache.
lw $t1, 0($t2) IF ID Q L1 L2 WB # Cache hit
add $t3, $t1, $t4 IF ID Q Q EX WB

lh $t1, 0($t2) IF ID Q L1 L2 L2 WB # Cache miss.
add $t3, $t1, $t4 IF ID Q Q EX WB

1.2.7 Stage: WB, Writeback

The WB stage occurs after the last functional unit stage (EX, L2, M6, etc). The default assumption for all
problems is that any number of write-backs can be performed per cycle. This assumption is unrealistic but
it makes solving problems far less tedious.

The following occurs during writeback: The result is written to the physical register file. The status of
the instruction (complete, and whether an exception occurred) is written to the reorder buffer.

If the instruction is a branch and if the ID map has been backed up, the outcome of the branch (taken,
not taken) is compared to the predicted outcome. If they differ recovery starts. Recovery consists of copying
the commit map to the ID map and restoring the free list. If the ID map has not been backed up recovery
will wait until the branch commits.

1.2.8 Stage: C, Commit

Commit occurs strictly in program order. By default the maximum number of instructions that can
commit per cycle is equal to the decode width.

During commit the commit register map is updated and the incumbent is put back on the free list.
Remember, the incumbent is not the physical register assigned to the committing instruction, it is the
physical register assigned to the last instruction that wrote the same architected register. (See the example
for the ID stage.)

1.2.9 Reorder Buffer

A queue holding in-flight instructions. Instructions always enter the ROB in ID and normally leave in
C. They can also be flushed, squashed en-masse, if there is a recovery due to an exception or misprediction.

An instruction will update its ROB entry during WB, indicating that it has completed and whether it
has raised an exception.

If over a long enough period instructions are fetched faster than they are being committed the ROB
will fill up, stalling IF and ID. This can affect the CPI in some problems, such as Spring 2003 Homework 6,
Problem 1.

1.2.10 Instruction Queue/Scheduler

A list of instructions that have not yet executed. (It’s called a queue but it’s not first-in/first-out.) The
scheduler monitors which functional units are busy and which registers are ready. From this information it
chooses instructions to start, they will enter the QO (usually just shown as Q) stage.

Real systems may use several schedulers, each scheduler can send instructions to a subset of functional
units. For example, there may be an integer instruction queue and a floating-point instruction queue.

3

1.2.11 ID Map

A table giving the latest physical register assigned to each architected register. Written in ID; the
entry number that is written is based on the architected register, that entry is written with the new physical
register number. Since it’s written in the ID stage it reflects the part of the program that has passed through
ID.

1.2.12 Commit Map

A table giving the latest physical register assigned to each architected register. Written in C; the entry
number that is written is based on the architected register, that entry is written with the new physical
register number. Since it’s written in the commit stage it reflects the part of the program that has passed
through commit.

1.2.13 Physical Register File

A table giving register values. It is written in the WB stage using, of course, physical register numbers.

1.2.14 Free List

A list of unused physical registers. An instruction removes a physical register when it passes through ID.
That physical register will hold the result of the instruction. If an instruction were proud of its creation (the
result) then it would hate to see it tossed into the recycle bin (free list). It is very fortunate that instructions
do not through their creations into the free list, but instead throw out their predecessor’s creation. (That
is, they put the incumbent in the free list.)

1.3 Problems, By Type
Problem types are described below in roughly order of increasing difficulty.

1.3.1 Pipeline Execution Diagram
Show a pipeline execution diagram for the code fragment below running on the following system . . . Solving
this type of problem is a matter of knowing the steps for instruction execution.

Solution Tips: Be sure to check for dependencies. Remember that instructions execute as soon as their
source operands are ready (unless there is not a free functional unit, which is rare for this type of problem).
If there is a branch misprediction, determine whether the ID Map is backed up; if it is recovery starts in
WB, otherwise it starts during commit.

See the following final exam problems: Spring 2000 problem 3, Spring 2001 problem 2, 1998 problem 2,
1997 problem 2.

1.3.2 Complete ID Map and Other Tables

A program executes on a dynamically scheduled system using method 3 as shown in the pipeline execution
diagram below. Using the tables provided, show the changes to the ID Map, Commit Map, and Physical
Register File. Also show when each instruction commits.

See the following final exam problems: Spring 2002 problem 1, Fall 2001 problem 1, Spring 2000 problem
2.

1.3.3 Load/Store Unit

See Fall 2001 problem 4a.

4

1.3.4 Non-Standard Systems

Many of the problems above could be solved by memorizing rote procedures. To test true understanding
some problems ask about an unusual (not covered in class) dynamically scheduled system. There are two
examples of this sort of problem (so far). In the first (Fall 2003 problem 2) the hardware is defective; tables
must be filled in showing the incorrect execution. In the second, Spring 2002 problem 2 (the later parts)
asks about the execution of predicated instructions on a dynamically scheduled system.

5

