
LSU EE 4720 Homework 5 Solution Due: 4 April 2003

Problem 1: [Easy] Complete pipeline execution diagrams for the following code fragments running
on the fully bypassed MIPS implementations with floating point units as described below.

# Solution
# One ADD unit, latency 3, initiation interval 1.
add.d f0, f2, f4 IF ID A1 A2 A3 A4 WF
sub.d f6, f0, f8 IF ID -------> A1 A2 A3 A4 WF
add.d f8, f10, f12 IF -------> ID A1 A2 A3 A4 WF

# One ADD unit, latency 3, initiation interval 2.
add.d f0, f2, f4 IF ID A1 A1 A2 A2 WF
sub.d f6, f0, f8 IF ID -------> A1 A1 A2 A2 WF
add.d f8, f10, f12 IF -------> ID -> A1 A1 A2 A2 WF

# Two ADD units (A and B), latency 3, initiation interval 4.
add.d f0, f2, f4 IF ID A A A A WF
sub.d f6, f0, f8 IF ID -------> A A A A WF
add.d f8, f10, f12 IF -------> ID B B B B WF

Problem 2: [Easy] Choose the latency and initiation interval for the add and multiply functional
units so that the second instruction stalls to avoid a structural hazard. Show a pipeline execution
diagram with this execution. (The easy way to solve it is to do the PED first, then figure out the
latency and initiation interval.)

mul.d f0, f2, f4
add.d f6, f8, f10

Both functional units have an initiation interval of 1. The multiply unit has a latency of 3 and the add unit has a
latency of 2, so if it were not for the stall they would encounter a structural hazard (the two instructions trying to write
their results at the same time).

# Solution
mul.d f0, f2, f4 IF ID M1 M2 M3 M4 WF
add.d f6, f8, f10 IF ID -> A1 A2 A3 WF

Problem 3: The two PEDs below show execution of MIPS code that produces wrong answers.
For each explain why and show a PED of correct execution.

# PED showing a DESIGN FLAW. (The code runs incorrectly.)
# Cycle 0 1 2 3 4 5 6 7
add.s f1, f10, f11 IF ID A1 A2 A3 A4 WF
sub.d f2, f0, f4 IF ID A1 A2 A3 A4 WF

# PED showing a DESIGN FLAW. (The code runs incorrectly.)
# Cycle 0 1 2 3 4 5 6 7 8
mul.d f0, f2, f4 IF ID M1 M2 M3 M4 M5 M6 WF
sub.s f1, f10, f11 IF ID A1 A2 A3 A4 WF

In both cases the problem is due to the fact that double-precision instructions (sub.d and mul.d here) actually
read and write registers in pairs. The sub.d, for example, reads f0 and f1 as the first operand (32 bits from each
register), f4 and f5 as the second operand, and write the result in registers f2 and f3.

http://www.ece.lsu.edu/ee4720/


The first code fragment does not run correctly because the sub.d read f1 in cycle 1, that is before it is written
by the proceeding instruction, in cycle 6. (Note that using instructions this way is unusual, but they still must execute
correctly.)

In the second code fragment the mul.d overwrites, in cycle 8, the result written by sub.s in cycle 7.

# Solution. (Runs correctly assuming a very complete set of bypass paths.)
add.s f1, f10, f11 IF ID A1 A2 A3 A4 WF
sub.d f2, f0, f4 IF ID -------> A1 A2 A3 A4 WF

# Solution. (Runs correctly.)
mul.d f0, f2, f4 IF ID M1 M2 M3 M4 M5 M6 WF
sub.s f1, f10, f11 IF ID ----> A1 A2 A3 A4 WF



Problem 4: As directed to below, design the logic for the floating-point register file in the MIPS
implementation illustrated below. The FP portion shows only part of add functional unit. Assume
that is the only functional unit.

• Describe how the FP register file works. For reference, here is a description of the integer
register file: The integer register file has two read ports and a write port. Each read port
has a five-bit address input and a 32-bit data output. The write port has a five-bit address
input and a 32-bit data input. Reads from zero retrieve 0, writes to zero have no effect.

• The following signals are available: is dbl ; if 1 the instruction uses double-precision

operands, otherwise single-precision. FP dst : if 1 the instruction writes the floating-point
register file, otherwise it does not (possibly because it’s not a floating-point instruction).

• Show all connections to the FP register file. Show the number of bits or the bit range for
each connection.

• The WF stage provides two signals, FPU (the value to write back) and fd, something gen-
erated in ID (as part of the solution). Additional signals can be sent down the pipeline.

• Keep In Mind: The hardware should work for both single and double operands. (That’s
what makes the problem interesting. If you’re confused first solve it assuming only double
operands, then attempt the full problem.)

• Make sure the fragments from the previous problem would run correctly.

Solution shown below. It is assumed that the functional units have 64-bit inputs. If they perform 32-bit operations
then they operate on the high bits, bits 63:32.

The register file stores 16 64-bit numbers, each 64-bit number is two registers, say f0 and f1. Notice that the
address inputs use just four bits, omitting the LSB of the register number. The outputs of the register file are 64 bits, a
multiplexor selects the full 64 bits if the register number is even (LSB 0) or it moves the low 32 bits to the high 32 bits if
the register number is odd.

The register file uses a write-enable (WE) signal to control register writes. This was not needed in the integer
register file because register zero could be used if nothing was to be written. There are actually two write enable signals,
for the high 32 bits (63:32) and for the low bits (31:0). If a double operand is written then both write enables are asserted.
If a single is written and the register is even WE high is asserted, otherwise WE low is asserted. The write enable signals
are computed in ID and sent down the pipeline to be used in the WF stage.



format
immed

IR

Addr
25:21

20:16

IR

IF
ID EX

WBMEM

IR IR

rsv

rtv

IMM

NPC

ALUAddr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data
Out

Addr

Data
In

Mem
Port

Data
Outrtv

ALU

MD

dst dst dst
Decode
dest. reg

NPC

A1

Int Reg File

FP Reg File

fdfdfd

FPU

Not part of
solution.

is dbl

FP dst

WF
64

63:32

31:0

31:0

64

63:32

31:0

31:0

21:21 (LSB) of rs

16:16 (LSB) of rt

25:22

20:17
A

A

D

D

D
I H

i
D

I L
o

63:32

31:0

WE Hi
WE
Lo

A

"0"

"0"15:11 (rt)

WE Hi

WE Lo

is dbl

FP dst

11:11 (LSB of rd)

WE Hi

WE Lo

fd

4:1

0:0


