LSUEE 4720 Homework 4 soltion Due: 31 March 2003
Problem 1. The two code fragments below call trap number 7. How do the respective handlers
determine that trap 7 was called?

! SPARC V8

ta %g0,7

# MIPS
teq $0, $0, 7
In SPARC V8 each trap number has its own handler routine, the first four instructions of which are in the trap table.
Since a particular handler routine is only called for 4 particular exception number, there is no need for the handler to
determine which exception oceurred. That is, if the trap 7 handler is running trap 7 must have oceurred.
In MIPS the only way for the hander routine to get the trap number is to 10ad the trap instruetion itself and ook at
the fleld holding the code, bits 15:6. The handler can get the address of the instruction from the EPC regjster.

Problem 2: There is a difference between the software emulation of unimplemented SPARC V8
instructions triggered by an illegal opcode exception, such as faddq, and Alpha’s use of PALcode
for certain instructions. (See the respective ISA manuals on the references Web page. For SPARC,
see Appendix G, it should not be difficult to find the PALcode information for Alpha.)

(a) What is similar about the two?
In both cases a Smg\@ ingtruction in a program can trigger someth'mg like a subroutine that has pﬂ\/‘\@g‘éd 20eess 1o
machine state.

(b)) What is the difference between the kinds of instructions emulated using the two techniques?
Why would it not make sense to use PALcode for quad-precision arithmetic instructions?

PALCode instructions are intended for tunctions that are 100 Qomp\@x for o s‘mg\@ RISC instruetion and which vary
from machine £o machine (DQQQUSQ the way The function is coded GQPQT\GS upon the under\ymg h‘MGWMQ). Among other
th'mgs, PALCode instructions are used the Way U&p instructions are used in other lSAS, 10 an‘orm syst@m calls.

A PALCode instruetion has a pMUQU\‘AT OPQOGQ, and an immediate op@rgnd speei\’ymg which PAL routine to execute.
The PALCode instructions are used Som@th'mg like U&p instructions, in which a U&p code is speemed in the instruction
and OPQY&Y\GS are p\QQQG in fixed TQg'\StQYS.

An '\\\Qg&\ OPQOGQ QXQQPU()T\ can be raised Dy any instruetion that the '\mp\@m@nmﬂon does not TQQOngQ. 1T such an
instruction is defined in the ISA the handler could emulate it, pUIUHg the correct result in the destination YQg\StQY. \\\Qg&\
OPQOGQS QXCQPUOT\S can be used to emulate instructions that would TQQU'\YQ alot of hardware and are QXPQQIQG 10 be Y&Yé\y
used in the imp\@momat'\on.

1T would not make sense to emulate QU‘AG prQ\S‘Oﬂ instructions with PALCode because U\Qy would not 100k like
other arithmetic instructions and so would be awkward to use. In P&YUQU\M‘ source opo.mnds would have £o be P\E}QQG in
fixed YQg\SIQYS, Sy £0 and £2 and destinations would be written 1o another tixed YQg\StQT, 5y £4. PALCode instructions
are a\wgys intended for software QmU\&UOﬂ, and so in an imp\@m@nmt'\on that had quad pYQQ'\S'\OT\ hardware the PALCode
would be called anyway. (\'E could use the new instruction to do the arithmetic, but it would not be qu‘\ek as }USY hg\/mg
q quad preeis'\on ‘mstmet'\on.)

Quad pYQQ\S\Oﬂ instructions emulated us‘mg '\\\Qgg\ instruction QXQQPUOHS 100K like normal instructions, for QXQmP\Q,
the source OPQY&T\GS can come from any YQ@SIQY (pemgps the TQg\StQY numpar must be q mu\t'\p\e of 4). ITan '\mp\emenm‘\on
does have quad—pr@e'\s'\on hQTGWQYQ, The instructions execute norma\\y.


http://www.ece.lsu.edu/ee4720/

Problem 3: In both SPARC and MIPS each trap table entry contains the first few instructions of
the respective trap handler. On some ISAs a vector table is used instead, each vector table entry
holds the address of the respective handler.

Why would the use of a vector table (rather than a trap table) be difficult for the MIPS
implementation below?

IF %ll ID EX MEM WB

NFd INFd m

ALU
25:21

p—
\

—1
Addr Data - rsv Mem
+4 20:16 Addr Data ] rtv b ALU Port
7: L Addr
A9 pin T Data Dataf{MD
I PC I :
ormat

"W ln  out
N

Addr
Mem (  Decode
dst dst dst
Port \ dest. reg )
gatta IR IR IR IR
4 E— I E— I

When an exception oceurs the processor must branch to the handler routine. With 2 trap table the address of
the handler routine ean be determined by combining the trap base register (SPARC) or 4 fixed address (MIPS) with the
axception code, this requires little or no hardware. If 2 vector table were used the address of the trap handler would
have o be read from memory. First, the address of the veetor table entry (holding the handler address) would need o
be computed, that can aiso be done easily. Next the vector table entry must be read from memory. That would require
the use of the memory stage which would complicate things because (1) the memory stage is not being used to execute
an ordinary instruction (complicating control), (2) & new path must be added for sending the vactor table address to the
memory address input, and (3) & path must be added from the memory output port to the PC input. All of this can be
done of course, but at Dest it MIgt save only & Tew cycles from a rarely oceurring event.



Problem 4: One way of implementing a vector table interrupt system on the MIPS implemen-
tation above would be by injecting hardware-generated instructions into the pipeline to initiate
the handler. These instructions would be existing ISA instructions or new instructions similar to
existing instructions.

What sort of instructions would be injected and how would they be generated? Show changes
needed to the hardware, including the injection of instructions. In the hardware diagram the
instructions can be generated by a magic cloud [tm] but the cloud must have all the inputs for
information it needs.

Include a program and pipeline execution diagram to show how your scheme works.

e Assume an exception code is available in the MEM stage.

e Include a vector base register, (VBR), which holds the address of the first table entry.
The solution is on the next page.



The solution appears below. Two new registers, VBR (vector table base register) and Exc Code (exception code)
are shown. The Inputs to these registers are omitted for clarity. Register VBR s loaded by a system instruction (not
shown or diseussed further) while Exc Code s loaded by the hardware when an instruction raising an exception passes
through the MEM stage. The hardware injects three instructions, lui, 1w, and jsysr. Instruction jsysr is new, it
jumps to the address in its operand regjster and switches the processor to system mode. 1t does not have a delay slot.
The code uses register kO which ordinary code must not use.

Normally the top input of the multiplexor is used. When an exception oceurs the other inputs are used in sequence,
injecting the three instructions. The immediate portion of the 1ui and Lw instructions are inserted by the hardware,
based on the contents of the VBR and Exc. Code registers.

A pipeline execution diagram is shown below. Notice that the injected instructions do not use IF.

%ll ID EX MEM wWB

NFd INFd m

1 ALU
25:21
Addr Data - rsv

Mem

IF
—
+4 20:16 Addr Dataf{ rtv 77 ALU Port
: 4 Addr
Addr DIn =
]

Data DataffMD

" ln out
_______________
format
Addr
Mem ( Decode
dst dst dst
Port \dest. reg /
gaia IR IR IR IR
U |7 E— I E— I

i 31:26 (opcode)

"o 25:21 (rs)
31:10 :
VBR "o 20:16 (1t)
31:16 15:0 (immed)
32
Exc. 8 " 31:26 (opcode)
Code _
) "o" 25:21 (rs)
0" ———~ .
" 20:16 (rt)
15:0 15:0 (immed)
jsysr $k0




# Solution, Continued

# Cycle 0 1 2 3 4
# Part of program
ant $s0, $s1, $s2 IF ID*EX ME WB

or $t0, $t1, $t2 IF ID EXx
xori $t3, $t3, 1 IF IDx
andi $s3, $s3, 7 IFx

# Injected by hardware. Assumed exception code is 1.

lui $k0, 0x1234 ID EX ME WB
1w $k0, 0x5404 ID EX ME WB
jsysr $kO ID EX ME WB
# Handler
lui $k0 $0x9000 IF ID

sw 0($k0), $r1 IF



