LSUEE"4720 Homework 3 sowtion Due: 19 March 2003

Problem 1: Consider the code below.

Cycle 0 1
add $t1, $t2, $t3 IF ID
sub $t4, $t5, $t1

1w $t6, 4($t1)

sw 0($t4), $t6

(a) Show a pipeline execution diagram for the code running on the following illustration.
Note that the add is fetched in cycle zero.

e Take great care in determining the number of stall cycles.

Solution

#

Cycle 01 2 3 45 6 7 8 9 1011
add $t1, $t2, $t3 IF ID EX ME WB

sub $t4, $t5, $t1 IF ID ----> EX ME WB

1w $t6, 4($t1) IF ----> ID EX ME WB

sw 0($t4), $t6 IF ID ----> EX ME WB

IF ID EX MEM WB
INPC INPC ALU
25:21
Addr Datafj{ rsv |+
‘ +4 ’ 20:16 Addr Data - rtv ALU
< —fAddr p t MD
rtv
PC —
format vl e E
immed | @ Z
Addr N
Mem (Decode "\
dst dst dst
Port \ dest. reg /
gﬁﬁ IR IR IR IR

http://www.ece.lsu.edu/ee4720/

Problem 2: The code below is the same as in the previous problem.

Cycle 0 1
add $t1, $t2, $t3 IF ID
sub $t4, $t5, $t1

1w $t6, 4($t1)

sw 0($t4), $t6

(a) Show a pipeline execution diagram (PED) of the code running on the system below.

Cycle 0 1 2 3 4 5 6 7 8 9
add $t1, $t2, $t3 IF ID EX (ME) (WB)

sub $t4, $t5, $t1 IF ID EX ME WB

1w $t6, 4($t1) IF ID EX ME WB

sw 0($t4), $t6 IF ID ---—--—- > EX ME WB

(b) In the PED circle each stage that sends a bypassed value. In the diagram label each
bypass path with the cycle in which it is used. To avoid ambiguity, label the end of the

path (at the mux input).
In the PED p&f@nth@S\S are used instead of circles.

E? ID EX MEM WB

lNPC INPC ALU

25:21 1 =
Addr Dataf{ rsv |4

IF
—
(+4) 20:16 Addr Data - rtv {77 ALU
—H Addr DIn @jj
-
rtv
PC -]
ormat

HMD

Addr
Mem (" Decode
dst dst dst
Port \ dest. reg /
Datag §|R IR IR IR

Out

The problem below is tricky. If necessary use Spring 2001 Homework 2 problem 3 for
practice.

Problem 3: The program below has an infinite loop and runs on the bypassed implemen-
tation below.

Initially $tO = LOOP (address of jalr)
LOQOP:

jalr $tO

addi $t0, $ra, -4
bne $t0, $0 LOOP
addi $t0, $t0, -4

IF{ ID EX MEM WB

FPC lNPC]

— 1 ALU
25:21
Addr Data - rsv | Mem
20:16
l +4) Addr Data rtv ALU Port
“§ Addr
Addr g i . Data DataffMD
rtv
format
@L Iy =
Addr
Mem (Decode
dst dst dst
Port \ dest. reg)
gaia IR IR IR IR
u E— I E— I

(a) Show a pipeline execution diagram for this program up to a point at which a pattern
starts repeating. Beware, the loop is tricky! Read the fine print below for hints.

Note that jalr reads and writes a register. The jalr instruction should be fetched twice per repeating pattern. The addi instruction should be fetched three times per

repeating pattern.

Code in dynamic order. (Same four static instructions repeated.)

#

Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
jalr $tO IF ID EX(ME)WB

addi $t0, $ra, -4 IF ID EX ME WB

bne $t0, $0 LOOP IFx

addi $t0, $t0, -4

jalr $tO IF ID -> EX(ME)WB
addi $t0, $ra, -4 IF -> ID EX ME WB
bne $t0, $0 LOOP IFx

addi $t0, $t0, -4

jalr $tO

addi $t0, $ra, -4 IF ID EX ME VB

bne $t0, $0 LOOP IF ID -—--> EX ME WB

addi $t0, $t0, -4 IF -———> ID EX ME WB

Cycle 01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23
jalr $t0 IF ID ----> EX(ME)WB

addi $t0, $ra, -4 IF ----> ID EX ME WB

bne $t0, $0 LOOP IFx

addi $t0, $t0, -4

jalr $t0 IF ID -> EX(ME)WB
addi $t0, $ra, -4 IF -> ID EX ME WB
bne $t0, $0 LOOP IFx

addi $t0, $t0, -4

Cycle 01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

(b) In the PED circle each stage that sends a bypassed value. In the diagram label each
bypass path with the cycle in which it is used. To avoid ambiguity, label the end of the
path (at the mux input).

(c) Determine the CPI for a large number of iterations.

teration types:

First: A: Starts at eyele 0, no other 10op instruction in pipeline.

Second: B: Starts at QyQ\Q 3, p'\p@\mQ contents: }&\\" in ME, first addi in EX.

Third: C: Starts at QyQ\Q 7 with addi, p'\p@\'me contents:]Q\f in ME, addi in EX.

Fourth: D: Starts at QyQ\Q 12, p'\pe\'m@ contents: bne in EX, second addi in 1D.

Fitth: B: Starts at QyQ\Q 17, p'\p@\m@ CONTENts:)Q\T in ME, first addi in EX.

Because state of p‘\p@\'me at the ngmmng of second and Tifth iterations are identical and because 0 has
the same values at those iterations, the patmm BCD will TQPQM. (TT\Q antire \()Op'. ABCDBCDBCD...) The
number of QyQ\QS in this three-iteration set is 17 — 3 = 14 and the number of instructions is 7 and so the CPI
is i =2

Problem 4: SPARC V9 has multiple floating-point condition code (FCC) registers. See
the references pages for more information on SPARC V8 and V9.

(a) Write a program that uses multiple FCC’s in a way that reduces program size. As an
example, the SPARC program below uses a single FCC. (To solve this problem first find
instructions that set and use the multiple FCC registers in the SPARC V9 Architecture
Manual. Then write a program that needs the result of one comparison (say, a < b)
several times while also using the result of another (say, ¢ > d). A program not using
multiple condition code registers should have to do the comparison multiple times whereas
the program you write does each comparison once.)

The solution appears Delow. Note that it is pOSS\D\Q 10 re-cast the code so that on & SyStQm Wwith one
FCC Oﬂ\y one of each QomeT\SOY\ ig done. The po'mt is 1o demonstrate use of the TQgiStQYS.

Solution

fcmpd %fccO, %f0, %f2

fempd Yfccl, %f4, %f6

fog %fccO, SKIP1

nop

faddd %f10, %f10, %f14
SKIP1:

fog %fccl, SKIP2

nop

fdivd %f10, %f10, %f12
SKIP2:

fog %fccO, SKIP3

nop

faddd %f10, %f10, %f16
SKIP3:

() SPARC V9 is the successor to SPARC V8, which has only one FCC register. (SPARC
V9 implementations can run SPARC V8 code.) Did the addition of multiple FCC’s require
the addition of new instructions or the extension of existing instructions? Answer the
question by citing the old and new instructions and details of their coding.

Yes and no.

Yas, the SPARC V9 T\oat'mg—pomt compare instructions (fcmpd, QIQ) are extensions of SPARC V9 in-
structions. (T\'\Qy nave the same OpQOGQ& he omy difference is that the V9 version uses two bits of the rd field
(bits 29-25) To specify the condition code register.)

No, the SPARC V9 ﬂOSlt\ﬂg—PO\ﬂt pranch instructions that can SpQQ\W an FCC are different than the
SPARC V8 branen instruetions. (Th@y have g different OPQOGQ.)

(¢) Do you think the designers of SPARC V8 planned for multiple FCC’s in a future version
of the ISA?

PTOb&b\y not, otherwise the V8 branenh instructions would have bits reserved for a condition code register
number (\N\U\ ingtructions to set them to ZQYO). 1T would take two Dits away from the 0ffset, but a 20-bit Offset
can still span over a million ingtructions, QT\OUgh for a vast majority of pranches.

