
LSU EE 4720 Homework 1 SolutionDue: 10 February 2003
At the time this was assigned computer accounts and solution templates were not ready.

If they become available they can be used for the solution, either way a paper submission
is acceptable.

Problem 1: When compiling code to be distributed widely one should be conservative
when selecting the target ISA but less caution needs to be taken with the target imple-
mentation. Explain what “conservative” and less caution mean here, and explain why
conservatism and in one case less caution in the other can be taken.

Conservative means choosing an ISA variation that most users’ computers implement (rather than the
variation that would give best performance). Less caution means selecting an implementation that fewer
people have but that would give better performance.

Conservatism is necessary for ISA selection because a computer won’t run software for an incompatible
ISA. On the other hand, a computer will run software compiled for a different implementation, though not as
fast as if compiled for the same implementation.

Problem 2: Based on the SPECINT2000 results for the fastest Pentium and the fastest
Alpha, which programs would a shameless and unfair Alpha advocate choose if the number
of programs in the suite were being reduced to five. Justify your answer.

At the time this solution was written, the fastest Pentium ran at 1130 SPECint2000’s and the fastest
Alpha ran at 928 SPECint2000’s.

The advocate would choose the five programs which performed best compared to the Pentium. They
are from best to worst (of 5) mcf, vpr, bzip2, twolf, crafty. The last, crafty, is faster on the Pentium so the
advocate might want just four programs. The table below shows the benchmark run times and the ratio of run
times (Pentium divided by Alpha), sorted by ratio.

Benchm. Pentium Alpha Ratio
mcf 231 123 1.88
vpr 210 159 1.32
bzip2 174 150 1.16
twolf 326 292 1.12
crafty 84.8 98.4 0.86
gcc 88.7 112 0.79
vortex 113 145 0.78
parser 170 256 0.66
eon 82.5 132 0.63
perlbmk 130 208 0.63
gzip 111 240 0.46
gap 75.2 164 0.46

http://www.ece.lsu.edu/ee4720/

Problem 3: The Pentium 4 can execute at a maximum rate of three instructions (actually,
microops, but pretend they’re instructions) per cycle (IPC), the Alpha 21264 can execute
at most 4 IPC and the Itanium 2 can execute at most 6 IPC. Assume that the number of
instructions for perlbmk, one of the SPECINT2000 programs, is the same for the Alpha,
Itanium 2, and Pentium 4 (pretending micro-ops are instructions, if you happen to know
what micro-ops are).
(a) Based upon the SPECINT2000 results (not base) for the perlbmk benchmark, which
processor comes closest to executing instructions at its maximum rate? (“Its”, not “the”.)

The first thing to figure out is just what is meant by “closest to . . . its maximum rate?” Another way
of stating the question is: which wastes the fewest instructions?

Lets suppose that each processor was executing at its maximum rate. The total number of instruc-
tions executed would be the IPC × φ × t, where φ is the clock frequency and t is the execution time.
According to the SPEC disclosure the Pentium 4 runs at 3066MHz and takes 130 seconds to execute
perlbmk and so it could execute at most 1.195740 trillion (1012) instructions. Similarly, the Alpha could
execute 1250MHz × 4 inst/cycle × 208 s = 1.04 trillion instructions and the Itanium2 could execute
900MHz × 6 inst/cycle × 251 s = 1.3554 trillion instructions. Since we are assuming they all execute
the same number of instructions, the Alpha, which could execute the fewest instructions, comes closest to its
potential.

(b) Are these numbers consistent with the expected tradeoffs for increasing clock frequency
(mentioned in class) and for increasing the number of instructions that can be started per
cycle?

Assume that the technology is fixed. (The transistors are not getting faster.) To increase the clock
frequency we need to break instructions up into more steps, and that means fewer opportunities for overlap.
That means there will be more times when one cannot find an instruction to execute (because the source
operands that it needs are not yet ready). So with a higher clock frequency we would expect execution to be
further from its maximum. This is true for the Pentium compared to the Alpha, but does not hold for the
Itanium2.

A processor that can handle more instructions per cycle will have a more difficult time overlapping them,
so one would expect it also to execute further from its maximum. This holds for the Itanium2 compared to the
Alpha and Pentium 4, but does not hold for the Alpha compared to the Pentium 4.

Problem Discussion:
The analysis is based on the assumption that the same number of instructions are executed on each

system, a bad assumption to make. (Sorry, I don’t have the numbers.) There is also an important difference
between the processors’ ability to overlap instructions. The Pentium 4 and Alpha 21264 are dynamically
scheduled, which means they have greater freedom in overlapping instructions. (Instructions do not have to
start in program order on these processors, while they do on the statically scheduled Itanium2.) Using a
technique called predication, the Itanium2 can avoid branches, an advantage the others don’t have. The Itanium
(VLIW) ISA has several other features designed to provide performance on modern implementations, features
the older Alpha (RISC) and ancient IA-32 (maybe CISC) ISAs lack.

Problem 4: Complete the lookup routine below so that it counts the number of times an
integer appears in an array of 32-bit integers. Register $a0 holds the address of the first
array element, $a1 holds the number of elements in the array, and $a2 holds the integer
to look for. The return value should be written into $v0.

lookup:
Call Arguments
#
$a0: Address of first element of array. Array holds 32-bit integers.
$a1: Number of elements in array.
$a2: Element to count.
#
Return Value
#
$v0: Number of times $a2 appears in the array starting at $a0

[] Fill as many delay slots as possible.
[] Avoid using too many instructions.
[] Avoid obviously unnecessary instructions.

A correct solution uses 11 instructions, including 6 in
the loop body. A different number of instructions can be used.

Solution Starts Here

addi $v0, $0, 0
sll $t0, $a1, 2
add $t1, $t0, $a0

LOOP:
beq $a0, $t1, DONE
lw $s0,0($a0)
bne $s0,$a2 LOOP
addi $a0, $a0, 4
j LOOP
addi $v0, $v0, 1

DONE:

Use the two lines to return, fill the delay slot if possible.
jr $ra
nop

