
04-1 04-1Instruction Usage

Usage of DLX Instructions By SPEC92 Integer Code
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FIGURE 2.28  Graphical display of instructions executed of the five programs from 
SPECint92 in Figure 2.26.
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04-2 04-2Instruction Usage

Usage of DLX Instructions By SPEC92 Floating-Point Code
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FIGURE 2.29  Graphical display of instructions executed of the five programs from 
SPECfp92 in Figure 2.27.
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04-3 04-3Control Transfer (Flow) Instructions

beqz r1, SKIP ! If r1 = 0 goto SKIP
add r2, r2, r5
SKIP
add r2, r3, r4

Control transfer (control flow) instructions (CTIs) . . .

. . . may cause next instruction to be fetched from . . .

. . . somewhere other than PC + 4 (assuming 4-byte instructions).

Programs would be trivial without them.

Occur frequently in programs.

Often a performance bottleneck.
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04-4 04-4

Names used below are common:

• Branch:
Conditional control transfer.

• Jump:
Unconditional control transfer.
Sometimes special case of branch.

• Jump and Link:
Unconditional, return address (PC) saved in register.

• Call:
Unconditional control transfer, PC, etc. saved.
Sometimes special case of jump and link.

• Return:
Unconditional, PC, etc. from most recent call restored.
Sometimes special case of jump and link.

04-4 EE 4720 Lecture Transparency. Formatted 14:56, 22 February 2002 from lsli04. 04-4



04-5 04-5CTI Examples
C Code

if( r2 == r3 ) goto TARGET1;
r4 = r5 + r6;
goto TARGET2;
TARGET1:
r4 = r5 * r6;
TARGET2:
PROCNAME();
return;

DLX Assembler Code

sub r1, r2, r3 ! r1 = r2 - r3
beqz r1, TARGET1 ! Branch if r1 = 0.
add r4, r5, r6 ! r4 = r5 + r6
j TARGET2 ! Jump unconditionally.
TARGET1: ! Label. (Assembler and linker find address.)
mult r4, r5, r6 ! r4 = r5 * r6
TARGET2: ! Another label.
sw 16(r20),r31 ! Save return address (of caller to this proc.)
jal PROCNAME ! Call procedure PROCNAME.
lw r31,16(r20) ! Restore return address (overwritten by jal).
jalr r31 ! Return (from this procedure).
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04-6 04-6

DLX Assembler Code (Same as last slide.)

sub r1, r2, r3 ! r1 = r2 - r3
beqz r1, TARGET1 ! Branch if r1 = 0.
add r4, r5, r6 ! r4 = r5 + r6
j TARGET2 ! Jump unconditionally.
TARGET1: ! Label. (Assembler and linker find address.)
mult r4, r5, r6 ! r4 = r5 * r6
TARGET2: ! Another label.
sw 16(r20),r31 ! Save return address (of caller to this proc.)
jal PROCNAME ! Call procedure PROCNAME.
lw r31,16(r20) ! Restore return address (overwritten by jal).
jalr r31 ! Return (from this procedure).

Branch instruction: beqz.

Jump instruction: j.

Call instruction: jal.

Return instruction: jalr.

Note: call and return are sometimes special case of jump and link instructions.
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04-7 04-7Usage of CTI By Type

CTI by type MIPS running SPEC92 benchmarks.
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FIGURE 2.12  Breakdown of control flow instructions into three classes: calls or re-
turns, jumps, and conditional branches.
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04-8 04-8Destination Address in CTIs

Any addressing mode could be used for destination.

Several are common:

• Absolute

Destination address is an immediate.

Best for procedure calls. . .
. . .because destination can be far away.

• PC-Relative or Displacement

Destination is displacement added to program counter.

ISA design choice: displacement size.

Good for conditional branches. . .
. . .because destination usually close by. . .

. . .and so small immediates suffice.
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04-9 04-9

• Register Indirect

Destination in register.

Used for subroutine return addresses.

Used for function address passed as parameters, as with qsort.

Also used by ISAs in which immediates smaller than addresses.

• Indexed

Destination is sum of two registers.

Useful for C switch and similar statements.
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04-10 04-10Destination Address Examples

Absolute and PC-Relative Examples

jump_abs TARGET1 ! Instruction contains entire address, TARGET1.
add r1, r2, r3
TARGET1: ! When jump_rel executes, PC = TARGET1.
jump_rel TARGET2 ! Instruction contains TARGET2-TARGET1.
sub r4, r5, r6
TARGET2:
and r7, r8, r9

To compute target address of jump rel processor adds operand to PC.

Names jump abs and jump rel are made up.

In DLX the following CTIs use PC-relative addresses: beqz bneq, j, jal, bfpt, and
bfpf

In DLX there are no CTIs that use absolute addressing.
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04-11 04-11Destination Address Examples

Jump and link SPARC instruction.

First two operands specify address: a register plus immediate.

Last operand is register to save PC in.

Register g0 is a dummy register.

jmpl %l0+0,%o7 ! Call address in %l0, PC saved in %o7
nop
...

SUBROUTINE:
add %l1, %l2, %l3 ! l3 = l2 + l1 (Note that l3 is desto.)
jmpl %o7+0, %g0 ! Return using address in o7. Save PC in dummy reg.
nop
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04-12 04-12Branch Displacement Size

Branch distances on DLX running SPEC92 programs.
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FIGURE 2.13  Branch distances in terms of number of instructions between the tar-
get and the branch instruction.

In DLX branch displacement limited to 16 bits.
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04-13 04-13Branch Conditions

How branch condition might be specified:

• Test value of general-purpose register (GPR).

• Test value of special-purpose condition code register (CCR).

• Test value of special-purpose loop-counter register.

• Comparison specified in branch instruction.

Note: test value means test if value is zero . . .

. . .which is much faster than test if value greater than constant.

A typical ISA would use one or two of these methods.
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04-14 04-14Branch Condition Example (DLX)

DLX uses two methods: GPR and CCR:

Integer compare instructions (e.g., slt) write result comparison into any GPR . . .

. . . where it is read by a branch.

Floating-point compare instructions (e.g., gtd) write result into special FP status
(condition-code) register.

slt r1, r2, r3 ! Compare r2 and r3, set r1=1 if r2 < r3.
beqz r1, TARGET1 ! Branch if r1 = 0. (r2 >= r3).
gtd f0, f2 ! Compare f0 and f2, set FP CCR true if f0 > f2
bfpt TARGET1 ! Branch if FP CCR is true.
....
TARGET1:

DLX Mnemonics:

slt: Set (destination register if op1) less than (op2).

beqz: Branch if (op1) equal to zero.

gtd: Greater-than double: Set FP CCR if op1 > op2.
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04-15 04-15Branch Condition Example (Sparc)

Sparc uses an integer condition codes register (actually part of a larger status register).

ALU instructions can optionally set condition codes.

Register has several 1-bit fields which describe outcome: negative, zero, overflow, and
carry.

Branch instruction can test for many combinations (e.g., not negative and not zero,
not negative, negative).

subcc %l1, %l2, %g0 ! %g0 = %l1 - %l2, discard difference but set codes.
sub %l3, %l4, %l5 ! %l5 = %l3 - %l4. Doesn’t set codes.
bg TARGET ! Branch if subcc result pos.. (g in bg is for >0.)
add %l6, %l7, %l8 ! Branch delay slot: add always executed.
....
TARGET:
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04-16 04-16Branch Condition Example, IA-64

IA-64 has special counted loop branches and a loop count register (LC).

If LC register non-zero counted loop branch is taken and register decremented.

mov lc = 10 ! Set loop count to 10.
LOOP:
add r100 = r100, r101 ! There are 128 64-bit GPRs.
br.cloop LOOP;; ! if( lc > 0 ) { lc--; goto LOOP; }
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04-17 04-17Tradeoffs between Methods to Specify Branch Condition

Factors

For compact code and programmer convenience:

⇒Comparison in branch instruction.

For fast implementation:

⇒Test GPR. (But may “waste” registers.)

⇒Test CCR. (Maybe limited to one condition at a time.)

⇒Test loop counter.
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04-18 04-18Procedure Call and Return

Procedures (A.k.a., subroutines, functions.)

Fundamental part of every nontrivial program.

Requires careful support in ISA.

Mandatory ISA Support

Call instruction saves PC in register.

Return restores saved PC.

Additional Support, Provided by ISA or Software (ABI).

Save and restore registers.

Prepare stack frame of called procedure.
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04-19 04-19

Application Binary Interface (ABI)

Rules for writing machine-language programs.

More restrictive than ISA . . .

. . . but not enforced by hardware.

Code adhering to ABI rules called compliant.

Given an ABI, . . .

. . . any compliant procedure . . .

. . . can call any other compliant procedure . . .

. . . (if call parameter and return value types match).

⇒ABI determines how “Additional Support” provided.
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04-20 04-20

Implementation of Call and Return Steps

Mostly Hardware

Powerful call and return instructions do most of the work.

Call instruction . . .

. . . saves program counter and other registers.

Return instruction . . .

. . . adjusts stack and restores registers.
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04-21 04-21

Implementation of Call and Return Steps

Mostly Software

Simple call and return only handle program counter.

Remainder done by general-purpose instructions . . .

. . . using ABI guidelines.

Before call, using general-purpose instructions, . . .

. . . procedure may save some registers.

Call instruction . . .

. . . places return address in an ABI-specified register.

Called procedure, using general-purpose instructions, . . .

. . . adjusts stack and may save registers.

Procedure return is similar.
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04-22 04-22CTI Variations

CTI Behaviors Chosen to Speed Implementation

Delayed Transfer:

Control transfer occurs d > 1 instructions after CTI.

E.g., consider execution of instruction 1 of DLX code:

1 j TARGET ! Jump to TARGET.
2 add R1,R1,R1
3 add R2,R2,R2
4 add R3,R3,R3
5 add R4,R4,R4
...
TARGET:

Normally, instruction 2 not executed.

When d = 2 instruction 2 is executed, but not 3, 4, and 5.

When d = 3 instruction 2 and 3 are executed, but not 4 and 5.
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04-23 04-23CTI Variations

Branch Instructions with Prediction Hints

Programmer indicates (hints) whether . . .

. . . branch is expected to be taken most of the time or . . .

. . . not taken most of the time.

Hint only affects execution speed, not what the program does.

If programmer correct, execution may be faster . . .

. . . if programmer wrong execution is correct but slower.

A low-cost implementation might ignore the hint.
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04-24 04-24

Example: Prediction hints added to DLX.

Hint indicated by following instruction mnemonic with . . .

. . . ,pt (predict taken) or . . .

. . . ,pn (predict not taken).

beqz,pn r1, LINE1 ! Programmer expects r1 to be nonzero most of the time.
beqz,pt r2, LINE2 ! Programmer expects r2 zero most of the time.
add r3, r4, r5
LINE1:
addi r3, r3, #1
LINE2:
add r3, r6, r7
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04-25 04-25

Predicated Execution
Predicated Instructions:

Arithmetic or register move instructions along with a condition.

Results written only if condition true.

If condition false instruction may still be executed . . .

. . . though results not written.

When predicated execution used fewer branches needed . . .

. . . though total number of instructions may be greater.

Because branches can slow implementations . . .

. . . execution can be faster with predication even though more instructions executed.
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04-26 04-26

Example: Add predication to DLX.

Predicate indicated in parenthesis before mnemonic.

(〈rp〉) means write results if 〈rp〉 nonzero . . .

. . . (!〈rp〉) means write results if 〈rp〉 is zero.

! High level code: if( r1 == 0 ) r2 = r2 + r5 else r2 = r2 + r4;
! Without predicated execution.
beqz r1, LINE1
add r2, r2, r4
j LINE2
LINE1:
add r2, r2, r5
LINE2:

! With predicated execution.
(r1) add r2, r2, r4 ! Execute if r1 nonzero.
(!r1) add r2, r2, r5 ! Execute if r1 zero.

Is it a coincidence that the destination and first source operands were the same in the adds?
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04-27 04-27ISA Classification

Consider the way cars are classified:

Criteria: performance, comfort, off-road capabilities.

Classifications: sports cars, luxury cars, SUVs.

A classification may be based on one or more criteria . . .

. . . for example sports cars are high performance and comfortable (excluding ride).

Processors are also classified based on multiple criteria.

Processor Classification: Three Criteria

Address space size: 32-bit, 64-bit, etc.

Register use by instructions: Load/store, memory/memory, stack, etc.

Instruction format: Fixed length, variable length, bundled (VLIW).
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04-28 04-28Criterion: Address Space Size

Describes address space size.

n-bit processor indicates. . .
. . . n-bit address space and fast n-bit integer instructions for pointer arithmetic.

Terminology widely adopted but not universal.

Temptation to inflate n, e.g., 128-bit processor (may refer to bus width).
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04-29 04-29Criterion: Register Use

Describes how instructions can use registers and addressing modes.

Load/Store, General Purpose Register

Memory only accessed by special load and store instructions.

Few special purpose registers.

Arithmetic and logic instructions use register or immediates.

Examples include most ISAs developed in 1980s and 1990s.

Memory/Memory, General Purpose Register

Memory can be read and written by arithmetic and logic instructions.

Arithmetic and logic instructions can also use register and immediate operands.

Few special purpose registers.

Characteristic of older ISAs.
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04-30 04-30Criterion: Register Use

Accumulator

Arithmetic instructions implicitly use accumulator.

May include other special-purpose registers.

Stack

Instructions refer to stack.

Used in several old and new machines.
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04-31 04-31Criterion: Instruction Format

Describes allowed instruction sizes and something called bundling.

Fixed Size

All instructions same size. (Eg/, 32 bits).

All instructions do about same amount of work.

Eases implementation.

Characteristic of newer ISAs.

Variable Size

Instruction size depends on instruction and operands.

Potential for compact code.

Implementation difficult.

Characteristic of older and special-purpose ISAs.
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04-32 04-32Criterion: Instruction Format

Bundled (VLIW,EPIC)

Instructions grouped into bundles, to be executed as a group.

Bundles also contain information to speed execution.

Used in new IA-64 ISA and older experimental machines.
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04-33 04-33ISA Classifications

Common Classifications and Status

RISC (Reduced Instruction Set Computing). . .

. . . Current General Purpose.

CISC (Complex Instruction Set Computing). . .

. . . Former and Legacy (still used) General Purpose.

VLIW (Very Long Instruction Word). . .

. . . Future General Purpose?

Stack. . .

. . . Embedded (built in).

Accumulator. . .

. . . Past General Purpose.
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04-34 04-34

CISC (Complex Instruction Set Computing)

Criteria

Register Use: Memory/Memory, General Purpose Register

Instruction Format: Variable Instruction Size

Characteristics

Programmer friendly, lots of instruction choices.

Programmer un-friendly, may contain many almost-useful special purpose instructions.

Average code size.

Implementation cost inflated by ISA complexity.

From mid 1980s to late 1990s ISA complexity slowed implementations but . . .

. . . fin-de-siècle1 CISC processors nearly as fast as RISC processors.

Examples: VAX, 68000, arguably IA-32 (popularly known as 80x86).

1 End of century, 20th century here.
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04-35 04-35

RISC (Reduced Instruction Set Computing)

Criteria

Register Use: Load/Store, General Purpose Register

Instruction Format: Fixed Instruction Sizes

Characteristics

Work performed by each instruction balanced to ease implementation.

Few special purpose, rarely used instructions.

Code size large. (Because of fixed instruction size.)
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04-36 04-36

RISC Characteristics, continued.

Instructions designed to speed implementation . . .

. . . though sometimes design biased towards contemporary technology . . .

. . . ignoring future technology that might be used in later implementations.

Some implementations rely on compiler to arrange (schedule) instruction for fast execution
(discussed later).

Most major ISAs since 1985 are RISC types.

Examples: SPARC V9, Alpha, MIPS, HP PA (Precision Architecture), Power4, PowerPC.

04-36 EE 4720 Lecture Transparency. Formatted 14:56, 22 February 2002 from lsli04. 04-36



04-37 04-37

VLIW (Very Long Instruction Word)

Special case: EPIC (Explicitly Parallel Instruction Computing)

Criteria

Instruction Format: Bundled.

Characteristics

Extra information in bundles allows higher speed implementations.

Examples: TI 320C6 (meant for signal processing), . . .

. . . the new Intel IA-64 ISA (implemented by Itanium).

Discussed further later in the course.
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04-38 04-38

Stack

Criteria

Register Use: Stack

Instruction Format: Variable Width

Characteristics

Small code size. Important for embedded [in cell phone, VCR, automobile engine, etc.]
processors.

Limited speed because stack limits execution overlap opportunities.

Examples: Burroughs Corp. machines (1961-1977), INMOS Transputer (1983-).
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