EE 4720 Homework 4 solution Due: 22 April 2002
To solve Problem 3 and the next assignment a paper has to be read. Do not leave the reading
to the last minute, however try attempting the first problem below before reading the paper.

Problem 1: The pipeline below was derived from the five-stage statically scheduled MIPS imple-
mentation by splitting each stage (except writeback) into two stages. Each pair of stages (say IF1
and IF2) does the same thing as the original stage (say IF), but because it is broken in to two
stages it takes two rather than one clock cycle. The diagram shows only a few details. Bypass
connections into the ALU are available from all stages from MEM1 to WB.

IF1 IF2 ID1 ID2 EX1 EX2 MEM MEM WB

be || T

ooal

The advantage of this pipeline is that the clock frequency can be doubled. (Actually not quite
times two.) Perfect execution is shown in the diagram below:

add $1, $2, $3 1IF1 IF2 ID1 ID2 EX1 EX2 ME1l ME2 WB
sub $4, $5, $6 IF1 IF2 ID1 ID2 EX1 EX2 ME1 ME2 WB
and $7, $8, $9 IF1 IF2 ID1 ID2 EX1 EX2 ME1 ME2 WB

(a) Suppose the old five-stage system ran at a clock frequency of 1 GHz and the new system runs

at 2 GHz. How does the execution time compare on the new system when execution is perfect?
18 half! That is, perTorm&me@ sealed with clock Tr@queney.

(b) Show a pipeline execution diagram of the code below on the new pipeline. Note dependencies

through registers $10 and $11.

add $10, $2, $3 IF1 IF2 ID1 ID2 EX1 EX2 ME1 ME2 WB

sub $4, $10, $6 IF1 IF2 ID1 ID2 --> EX1 EX2 ME1 ME2 WB

and $11, $8, $9 IF1 IF2 ID1 --> ID2 EX1 EX2 ME1 ME2 WB

or $20, $21, $22 IF1 IF2 --> ID1 ID2 EX1 EX2 ME1 ME2 WB
xor $7, $11, $0 IF1 --> IF2 ID1 ID2 EX1 EX2 ME1 ME2 WB

(¢) In the previous part there should be a stall on the new pipeline that does not occur on the
original pipeline. (It’s not too late to change your answer!) How does that affect the usefulness of
splitting pipeline stages?

Assum'mg not all &d}ﬁl@@m instructions are UUQ\y GQPQHGQM‘ spnmng is still useful, but po.rformsme@ does not scale
With clock frequency. (It never does.)

(d) (Optional, complete before reading paper.) To get that I'm-so-clever feeling answer the following:
Suppose there is no way a 32-bit add can be completed in less than two cycles. Is there any way
to perform addition so that results can be bypassed to an immediately following instruction, as

in the example above, but without stalling? The technique must work when adding any two 32-
bit numbers. Hint: The adder would have to be redesigned. (A question in the next homework
assignment revisits the issue.)

Split the ALU in o sixteen-bit parts and bypass the low and high parts separately.

Problem 2: Note: The following problem is similar to one given in the Fall 2001 semester, see

look at the solutions until you’re really stuck. This problem below uses MIPS instead of DLX and is
for Method 3 instead of Method 1. The code below executes on a dynamically scheduled four-way
superscalar MIPS implementation using Method 3, physical register numbers.

e Loads and stores use the load/store unit, which consists of segments L1 and L2.
e The floating-point multiply unit is fully pipelined and consists of six segments, M1 to M6.

e The usual number of instructions (for a 4-way superscalar machine) can be fetched, decoded,
and committed per cycle.

e An unlimited number of instructions can complete (but not commit) per cycle. (Not realistic,
but it makes the solution easier.)

e There are an unlimited number of reservation stations, reorder buffer entries, and physical
registers.

e The target of a branch is fetched in the cycle after the branch is in ID, whether or not the
branch condition is available. (We’ll cover that later.)

(a) Show a pipeline execution diagram for the code below until the beginning of the fourth iteration.
Show where instructions commit.
See diagram helow.

(b) What is the CPI for a large number of iterations? Hint: There should be less than siz cycles
per iteration.

The CPLis 2 = 0.5.
(¢) Show the entries in the ID and commit register maps for registers £0 and $1 for each cycle in
the first two iterations. If several values are assigned in the same cycle show each one separated by
commas.

(d) Show the values in the physical register file for £0 and $1 for the first two iterations. Use a “|”
to show when a physical register is removed from the free list and use a “[” to show when it is put
back in the free list.

See pipeline execution diagram on the next page.

http://www.ece.lsu.edu/ee4720/2001f/hw03.pdf
http://www.ece.lsu.edu/ee4720/2001f/hw03_sol.pdf

! Solution
LOOP:
! Cycle

ldcl £0, 0($1)
mul.d £f0, fO, f2
sdcl 0($1), £fO
addi $1, $1, 8
bne $2, $0 LOOP
sub $2, $1, $3

Cycle

ldcl £0, 0($1)
mul.d £0, fO0, £f2
sdcl 0($1), £fO
addi $1, $1, 8
bne $2, $0 LOOP
sub $2, $1, $3

Cycle

1ldc1 £f0, 0($1)
mul.d £f0, f0, £f2
sdcl 0($1), fO
addi $1, $1, 8
bne $2, $0 LOOP
sub $2, $1, $3

Cycle

ldcl £0, 0($1)
mul.d f0, f0, £f2

Cycle
ID Map
£0 99
$1 98

0

IF
IF
IF
IF

1

ID
ID
ID
ID
IF
IF
1

1

97,

95

! Instructions shown in dynamic

2 3 4 5 6

Q L1
Q
Q L1
Q EX
ID Q
1D Q
2 3
IF
IF
IF
IF

2 3

96

L2

WB

EX

ID
ID
ID
ID
IF
IF
4

4

4

94,

92

wC
M1 M2

L1

L1
EX

H
o
o

5 6
IF
IF
IF
IF

5 6

5 6

93

order.
7 8

(Instructions
10 11 12 13

9

M3 M4 M5 M6 WC

7 8
L2 WB
M1

WB
EX WB

8
D Q
ID Q
D Q
ID Q

IF ID
IF ID

7 8

91,90
89

M2

L1

L1
EX

f=]

IF
IF

10

M3

10
L2

WB

EX
10
ID
ID

L2

11

M4

11
WB
M1

11

wC

Q

12

M5

12

M2

WB

12

L1

12

13

M6

13

M3

13
L2

13

repeated.)

14

14

wC
L2

14

M4

14
WB
M1

14

15 16

15 16

wC

Q

15 16

M5 M6

15 16

M2 M3

15 16

In cycle one first 97 is assigned to fO, then 96 (replacing 97).
same sort of replacement occurs in cycles 4 and 7.

Cycle
Commit Map
£0 99

$1 98

! Cycle

Cycle

0

0

0

1

1

1

Physical Register File

99
98
97
96
95
94
93
92
! Cycle

1.0

0x1000

L
L

2 3 4 5 6 7 8 9

97

2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9

10

0x1008

L
L
L

20

0x1010

4 5 6 7 8 9

10

10

10

10

11

96

11

11

11

12 13 14

95

94

93

12 13 14

12 13 14

15 16
91

92

15 16

15 16

17

17

wC
L2 WC

Q aQQ

17

M4 M5

17

The

17
90

89
17

17

12 13 14 15 16 17

The following is an introduction to the next few problems.

As mentioned several times in class many of the performance-enhancing microarchitectural
features that came in to wide use in the closing decades of the twentieth century (I love the way
that sounds!) are much easier to apply to RISC ISAs than CISC ISAs. Bound by golden handcuffs
to the CISCish IA-32 ISA, Intel was forced to get RISC-level performance from IA-32. (Not just
Intel, DEC [now Compagq, perhaps soon HP] faced the problem with the VAX ISA and IBM with
360.) The solution chosen by Intel (and also DEC) was to translate individual IA-32 instructions
in to one or more pops (micro-operations). Each pop is something like a RISC instruction and so
the parts of the hardware beyond the IA-32 to pop translation can employ the same techniques
used to implement RISC ISAs.

given in class) describes the Pentium 4 implementation of IA-32, including pops (which are typeset
using “u” instead of the Greek letter “u”, except occasionally in figures). This paper was not
written for a senior-level computer architecture class four weeks from the end of the semester and
so it will include material which we have not yet covered (caches and TLBs) and some material not
covered at all. Some stuff in the paper is not explained (how they do branch prediction or what
the Pentium 4 pipeline segments in Figure 3 mean), some of this can be figured out other things
have to be found out elsewhere (but not for this assignment).

Read the paper and answer the question below. The next homework assignment will include
additional questions on the paper. For this initial reading skip or lightly read material on the L2
cache, L1 data cache, and the ITLB. Questions on the cache material might be asked in a later
assignment.

Problem 3: What does the paper call the following actions and components (that is, translate
from the terminology used in class to the terminology used in the paper):

Comumit — Ratire

ID Register Map - Frontend RAT

Commit Register Map — Retirement RAT

Physical Register File - Physical Register File

http://www.intel.com/technology/itj/q12001/articles/art_2.htm
http://www.ece.lsu.edu/ee4720/s/hinton_p4.pdf

