LSU EE 4720 Homework 1 Due: 15 February 2002

At the time this was assigned computer accounts and solution templates were not available. If
they become available they can be used for the solution, either way a paper submission is acceptable.

Problem 1: The value computed by the program below approaches m. Re-write the program in
MIPS assembler. The code should execute quickly. Assume that all integer instructions take one
cycle, floating-point divides take ten cycles, floating-point compares take one cycle, and all other
floating-point instructions, including conversion, take four cycles. Note: As originally assigned only
the time for divides and adds was given. Make changes to the code to improve speed (possibly using
an integer for i or even using both an integer and double). Do not use a different technique for
computing .
int
main(int argv, char **argc)
{

double i;

double sum = 0;

for(i=1; i<50000000;)
{
sum = sum + 4.0 / i; i+= 2;
sum = sum - 4.0 / i; i+4= 2;

}
printf ("After %d iterations sum = %.8f\n", (int)(i-1)/2, sum);

return O;

¥

Problem 2: The program below is used to generate a password based on the outcome of several
rolls of a twenty-sided die. The program was compiled using the Sun Workshop Compiler 5.0
targeting SPARC V7 (-xarch=v7) and SPARC V9 (-xarch=v8plus, code which can run on a V9
processor with a 32-bit OS), the output of the compiler is shown for the for loop.

Use the V8 architecture manual to look up V7 instructions, available at
https://www.ece.lsu.edu/ee4720/samv8.pdf; the V9 architecture manual is available at
https://www.ece.lsu.edu/ee4720/samv9.pdf.

Here are a few useful facts about SPARC:

Register names for SPARC are: %g0-%g7 (global), %10-%17 (local), %10-%1i7 (input), %00-%07
(output), and %£0-%£31 (floating point). Registers %fp (frame pointer) and %sp are aliases for %i6
and %06, respectively. Register %g0 is a zero register.

Local variables (the only kind used in the code fragment shown) are stored in memory at some
offset from the stack pointer (in %sp). For example, 1dd [%sp+96],%£0 loads a local variable into
register %£0.

All V7 and V8 integer registers are 32 bits. V9 registers are 64 bits but with the v8plus option
only the 32 lower bits are used.

Unlike MIPS and DLX, the last register in an assembly language instruction is the destination.
For example, add %gl, %g2, %g3, puts the sum of g1 and g2 in register g3.

Like MIPS, SPARC branches are delayed. Unlike MIPS, some delayed branches are annulled,
indicated with a “,a” in the mnemonic. In an annulled branch the instruction in the delay slot is
executed if and only if the branch is taken.

https://www.ece.lsu.edu/ee4720/
https://www.ece.lsu.edu/ee4720/samv8.pdf
https://www.ece.lsu.edu/ee4720/samv9.pdf

(a) For each compilation, identify which registers are used for which program variables.

(b) For each instruction used in the V9 version of the code but not in the V7 version, explain what
it does and how it improves execution over the V7 version.

int

main (argc, argv)
int argc;
char **xargv;

{

int die_rolls[] = {15, 17, 6, 10, 19, 19, 15, 17, 16, 5, 0 };
int *rolls_ptr = &die_rolls[0];

char pw[8];

char *pw_ptr = &pwl[0];

int faces_per_die = 20; /* Available at Little Wars in Village Square */
double bits_per_roll log(faces_per_die)/1log(2.0);
double bits_per_letter = log(26.0) / log(2.0);

double bits
uint64_t seed
int roll;

0.0;
0; /* A 64-bit integer. */

while((roll
{
seed = faces_per_die * seed + (roll-1);
bits += bits_per_roll;

*rolls_ptr++))

}
for(; bits >= bits_per_letter; bits -= bits_per_letter)
{
*pw_ptr++ = ’a’ + seed I 26;
seed = seed / 26;
}
*pw_ptr = 0;

printf ("The password is %s\n",pw);
return O;

! Compiled with -xarch=v7

132 ! for(; bits >= bits_per_letter; bits -= bits_per_letter)
/* 0x010c 32 */ 1dd [%sp+961,%f0
.L900000118:
/* 0x0110 32 %/ fcmped %£30,%f0
/* 0x0114 x/ nop
/* 0x0118 */ fbul .L77000009
/* 0x011c x/ or %g0,0,%02
.L900000116:

/%
/*
/*
/*

sult = %00

/%
/*
/*

/*
/*
/*
/*

sult = %00

/*
/*
/*
/*
/%
/*
/*
/*
/*
/%

/*

/%
/*

/*

/*
/*

/*
/*
/%

34

0x0120
0x0124
0x0128
0x012c

0x0130
0x0134
0x0138

35

0x013c
0x0140
0x0144
0x0148

0x014c
0x0150
0x0154
0x0158
0x015c¢c
0x0160
0x0164
0x0168
0x016¢c
0x0170

36

34

35

34
35

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

!

*pw_ptr++ = ’a’ + seed % 26;

or
or
or
call

std
add
stb

%g0,%12, %01
%g0,%1i1,%00
%g0,26,%03
__urem64 ! params = %00 %ol %02 %03

%30, [%sp+104]
%01,97,%g2
g2, [hi0]

seed = seed / 26;

or
or
or
call

or
ldd
add
or
ldd
fsubd
fcmped
or
fbge
or
.L77000009:

}

Compiled With -xarch=v8plus

32

0x00e8

0x00ec
0x00£0

33
34

0x00£4

0x00£8
0x00£fc

35

0x0100

0x0104
0x0108

32

32

34

35

34

*/

*/
*/

*/

*/
*/

*/
*/
*/

for(; bits >=

%g0,%1i1,%00
%g0,0,%02
%20,26,%03
__udivé4 ! params = %00 %ol %02 %03
%g0,%i2, %01

[%sp+96] ,%f0

%10,1,%10

%g0, %00, %i1

[isp+104]1,%£30

%£30,%£0,%£30

%£30,%£0

%g0,%01,%12

.L900000116

%g0,0,%02

bits_per_letter; bits -= bits_per_letter)

fcmped %fcc0,%£8,%f4
.L900000117:
fbul,a,pt %fccO,.L900000115
stb %g0, [%10]
{
*pw_ptr++ = ’a’ + seed 7 26;
udivx %00,26,%g2
.L900000114:
mulx %22 ,26,%g3
sub %00,%g3,%g3

seed = seed / 26;

or
fsubd
add

%g0,%g2, %00
%hES, %l ,ht8
%e3,97,%g3

! Re-lI

! Re-Jii

/*
/*
/%
/*
/*

0x010c
0x0110
0x0114
0x0118
0x011c

36

*/
*/
*/
*/
*/

stb %g3, [%10]
add %i0,1,%i0
fcmped %fccl,%£8,%f4
fbge,a,pt %fccl, .L900000114
udivx %00,26,%g2
.L77000009:

	Problem 1
	Problem 2
	Part char 97
	Part char 98

