
Name Solution

Computer Architecture

EE 4720

Midterm Examination

Friday, 26 October 2001, 13:40–14:30 CDT

Alias ΨΨΨ

Problem 1 (15 pts)

Problem 2 (15 pts)

Problem 3 (10 pts)

Problem 4 (60 pts)

Exam Total (100 pts)

Good Luck!

Problem 1: The DLX implementation below lacks bypass paths and, worse than that, lacks the
hardware needed for control-transfer instructions.

Changes and cycles shown in blue in the diagram below.

sign
ext.

IR

Addr
6:10

11:15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Data

NPC

Decode
RD RD RD RD

363

9

10

© [5 pts] Add exactly the hardware needed so that the control-transfer instructions execute as shown

below. Include a connection to the =0 box used in determining whether a branch is taken.

© [5 pts] Add exactly those bypass paths necessary so that the code below executes as shown. Check
the code carefully for dependencies, including all those related to the jalr instruction.

© [5 pts] Show the cycles in which each added wire will be used.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
ori r1, r1, #15 IF ID EX ME WB
bnez r1, SKIP IF ID EX ME WB
add r0, r0, r0 IF IDx
xor r0, r0, r0 IFx
SKIP:
sub r20, r20, r21 IF ID EX ME WB
jalr r20 IF ID EX ME WB
xor r0, r0, r0 IFx
...
add r15, r31, r0 IF ID EX ME WB
or r16, r16, r15 IF ID EX ME WB
! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12

2

Problem 2: The DLX implementation below includes bypass paths into the EX/MEM.B register.

sign
ext.

IR

Addr
6:10

11:15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Data

NPC

Decode
Rd

RD RD RD

Bx

0
1

2

=’

=’

11:15

11:15

LSB

MSB

© [5 pts] Write a program that uses all three paths into the EX/MEM.B register. Hint: It’s easy.
addi r2, r2, #1 IF ID EX ME WB
sw 0(r1), r2 IF ID EX ME WB
sw 4(r1), r2 IF ID EX ME WB
sw 8(r1), r2 IF ID EX ME WB

© [10 pts] Design the control logic for the multiplexor feeding the EX/MEM.B register. The control
logic should be in the ID stage and feed into the ID/EX.Bx pipeline latch provided in the diagram
above.

Changes shown in blue.

3

Problem 3: Registers r1 and r2 each contain a signed integer, call them i and j. Register r10
contains a double-word-aligned address, call the address A. Let p = i j.

© [10 pts] Starting at address A write p in three formats: integer, double-precision floating-point, and
single-precision floating-point. Maintain as much precision as possible.

Hint: A reasonable solution would use movitof and cvtXtoY instructions.

! Initially: r1 and r2 each contain an integer, i and j.
! r10 contains an address.
!
! At Mem[r10] write i * j (integer format).
! At Mem[r10+?] write i * j (double-precision FP)
! At Mem[r10+??] write i * j (single-precision FP)

DLX Solution
movitofp f0, r1
movitofp f2, f2
cvtitod f0, f0
cvtitod f2, f2
multd f4, f0, f2
cvtdtoi f6, f4
sf 0(r10), f6
sd 8(r10), f4
cvtdtos f4, f4
sf 16(r10), f4

MIPS Solution
mtc1 $1, $f1 # Move to FP (co-processor 1) register.
mtc1 $2, $f2
cvt.d.w $f10, $f1 # Convert from integer to double FP.
cvt.d.w $f20, $f2
mul.d $f4, $f10, $f20
sdc1 $f4, 8($10) # Store double-sized item (from $f4 and $f5).
cvt.s.d $f6, $f4
swc1 $f6, 16($10) # Store word-sized item
cvt.w.d $f6, $f4
swc1 $f6, 0($10)

4

Problem 4: Answer each question below.

(a) In the two pipelined functional units below an instruction must pass through each segment
twice. The A’s are for FP addition and M’s are for FP multiplication.

A1

P
ipeline Latch

A2
P

ipeline Latch

M1
P

ipeline Latch
M2

P
ipeline Latch

© [10 pts] Complete the pipeline execution diagram below for a system using these functional units.
Don’t overlook the dependency through f6.

! Solution

addd f0, f2, f4 IF ID A1 A1 A2 A2 WB

addd f6, f8, f10 IF ID -> A1 A1 A2 A2 WB

muld f12, f6, f14 IF -> ID -------> M1 M2 M1 M2 WB

muld f16, f18, f20 IF -------> ID M1 M2 M1 M2 WB

5

(b) The code below, which of course is not DLX, uses memory-indirect and autoincrement address-
ing.
lw r1, @(r2) ! Memory-indirect load.
lw r4, (r5)+ ! Autoincrement
lh r6, (r7)+ ! Autoincrement

© [10 pts] Rewrite the code in DLX.

lw r1, 0(r2)
lw r1, 0(r1)
lw r4, 0(r5)
addi r5, r5, #4
lh r6, 0(r7)
addi r7, r7, #2

(c) The three types of interrupts discussed in class are traps, hardware interrupts, and exceptions.

© [6 pts] For each one explain how the exception code (number) is determined.

Traps: the code is specified in the trap instruction itself. Hardware Interrupts: the code is based on the interrupt request
line that was asserted. Exceptions: the code is based on what went wrong with the faulting instruction.

© [6 pts] For each one explain where control returns after the handler completes.

Trap: The instruction following the trap instruction. Hardware Interrupt: The instruction just after the last one to
complete. Exception: the faulting instruction.

6

(d) An ISA has two implementations, A and B; each implementation has a well-written compiler.

© [5 pts] Would the code compiled by A’s compiler run on implementation B? Briefly explain.

Yes, since they are compiled for the same ISA.

© [5 pts] A program is compiled using A’s compiler and B’s compiler. How might the compiled code
differ? Provide a reason for the difference.

Scheduling of instructions might be different because of differences in functional unit latencies. For example, in A loads
might have a latency of 1 (as in Chapter 3 DLX) while in B they might have a latency of 2, and so for B the compiler
try to move two instructions, rather than one, between a load and a use of the loaded value.

(e) You have become the owner of a large American computer company, congratulations.

© [6 pts] How can you (legally) influence the decision-making process so that SPECs next benchmark
suite does not unfairly put your company’s products at a disadvantage? (Note: Bribery is illegal
in the U.S.)

Become a member of SPEC and help create, and vote for, benchmarks fair benchmark suites.

7

(f) DLX does not have delayed branches, but many other RISC ISAs do.

© [6 pts] What is a delayed branch and how does it help?

A delayed branch is one in which the instruction following the branch (or the d instructions following the branch, though
d is almost always 1) in program order is executed regardless of whether the branch is taken, followed by the branch
target if the branch is taken. Many implementations will be forced to squash the instruction following a taken non-delayed
branch, with a delayed branch the instruction following the branch is not squashed and so can do useful work.

(g)

© [6 pts] How and why is the CPI affected in an implementation re-designed for a higher clock
frequency?

With a higher clock frequency less work can be done per clock cycle. This might increase the latency of certain instructions
(for example, from six to twelve multiply segments), increasing the number of stall cycles and thus increasing CPI.

8

