
12-1 12-1This Set

Material from Section 4.3

This set under construction.

Outline

• Branch Prediction Overview

• One-Level Predictor

• Two-Level Correlating Predictor

• Other topics to be added.

• Sample Problems

12-1 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-1

12-2 12-2Branch and Target Prediction

Motivation

Branches occur frequently in code.

At best, one cycle of branch delay; more with dependencies.

Therefore, impact on CPI is large.

Techniques

Branch Prediction:

Predict outcome of branch. (Taken or not taken.)

Branch Target Prediction:

Predict branch or other CTI’s target address.

Branch Folding:

Replace branch or other CTI with target instruction.

12-2 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-2

12-3 12-3Branch Prediction

Methods Covered

• One-level predictor

• (m,n) two-level correlating predictor or (m,n) predictor for short.

12-3 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-3

12-4 12-4Branch Prediction Idea

Idea: Predict based on assumption that patterns hold.

Example:

LOOP:
lw r1, 0(r2) ! Read random number, either 0 or 1.
addi r2, r2, #4
slt r6, r2, r7
beqz r1, SKIP
addi r3, r3, #1
SKIP:
bneq r6, LOOP ! Loop executes 100 iterations.
nop

Second branch, bneq, taken 99 out of 100 executions.

Pattern for bneq: T T T . . . NT T T T

First branch shows no pattern.

12-4 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-4

12-5 12-5Prediction Accuracy

SPEC89 benchmarks on IBM POWER (predecessor to PowerPC).

18%

tomcatv

spiceSPEC89
benchmarks

gcc

li

2% 4% 6% 8% 10% 12% 14% 16%

0%

1%

5%

9%

9%

12%

5%

10%

18%

nasa7

matrix300

doduc

fpppp

espresso

eqntott

1%

0%

Frequency of mispredictions

FIGURE 4.14 Prediction accuracy of a 4096-entry two-bit prediction buffer for the
SPEC89 benchmarks.

12-5 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-5

12-6 12-6

nasa7 1%
0%

matrix300 0%
0%

tomcatv
1%
0%

doduc

spice
SPEC89
benchmarks

fpppp

gcc

espresso

eqntott

li

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%

4096 entries:
2 bits per entry

Unlimited entries:
2 bits per entry

Frequency of mispredictions

5%
5%

9%
9%

9%
9%

12%
11%

5%
5%

18%
18%

10%
10%

FIGURE 4.15 Prediction accuracy of a 4096-entry two-bit prediction buffer versus an
infinite buffer for the SPEC89 benchmarks.12-6 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-6

12-7 12-7Branch Prediction Terminology

Outcome: [of a branch instruction execution].
The outcome of the execution of a branch instruction.

T:

A taken branch.

NT: or N

A branch that is not taken.

Prediction: [made by branch prediction hardware].
The predicted outcome of a branch.

Misprediction:

An incorrectly predicted outcome.

Prediction Accuracy: [of a branch prediction scheme].
The number of correct predictions divided by the number of predictions.

12-7 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-7

12-8 12-8Branch Prediction Terminology (Continued)

Speculative Execution:

The execution of instructions following a predicted branch.

Misprediction Recovery:

Undoing the effect of speculatively executed instructions . . .

. . . and re-starting instruction fetch at the correct address.

12-8 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-8

12-9 12-9One-Level Branch Predictor

Idea: maintain a branch history for each branch instruction.

Branch histories stored in a branch history table.

Branch history can be an arbitrary finite state machine or a counter.

Branch outcome causes a change in branch history.

Branch prediction based on state of branch history.

12-9 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-9

12-10 12-10Branch History Counter

If a counter used, branch history incremented when branch taken. . .

. . . and decremented when branch not taken.

Symbol n denotes number of bits for branch history.

To save space and for performance reasons . . .

. . . branch history limited to a few bits, usually n = 2.

Branch history updated using a saturating counter.

A saturating counter is an arithmetic unit that can add or subtract one . . .

. . . in which x + 1 → x + 1 for x ∈ [0, 2n − 2] . . .

. . . x − 1 → x − 1 for x ∈ [1, 2n − 1] . . .

. . . (2n − 1) + 1 → 2n − 1 . . .

. . . and 0 − 1 → 0.

For an n-bit counter, predict taken if counter > 2n−1.

12-10 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-10

12-11 12-11One-Level Branch Predictor Hardware

Illustrated for Chapter-3 DLX implementation . . .

. . . even though prediction not very useful.

Branch Prediction Steps

1: Predict.

Read branch history, available in ID.

2: Determine Branch Outcome

Execute predicted branch in usual way.

3: Recover (If necessary.)

Undo effect of speculatively executing instructions, start fetching from correct path.

4: Update Branch History

12-11 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-11

12-12 12-12Branch History Table

Branch History Table

Stores branch histories,

Implemented using a memory device.

Address (called index) is hash of branch address (PC).

For 2m-entry BHT, hash is m lowest bits of branch PC skipping alignment.

Branch address:
31 m+2

BHT Addr

m+1 2

Align.

0

1 0

Data input and output of BHT is branch history.

12-12 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-12

12-13 12-13Sample Local History

Outcomes for individual branches, categorized by pattern, sorted by frequency.

Branches running TEX text formatter compiled for SPARC (Solaris).

Arbitrary, pat 60288, br732164, 0.7743 0.7170 0.7199 (0.19675)
% Patterns # Branches gshre local corr Local History

0: fe7f 0.0004 1397 0.912 0.916 0.896 TTTTTTTNNTTTTTTT 0
1: ff3f 0.0004 1323 0.924 0.909 0.900 TTTTTTNNTTTTTTTT 0
2: fcff 0.0004 1317 0.949 0.939 0.948 TTTTTTTTNNTTTTTT 0
3: ff9f 0.0003 1245 0.910 0.905 0.898 TTTTTNNTTTTTTTTT 0
4: f9ff 0.0003 1235 0.955 0.950 0.955 TTTTTTTTTNNTTTTT 0
5: ffcf 0.0003 1188 0.926 0.921 0.923 TTTTNNTTTTTTTTTT 0
6: 60 0.0003 1163 0.873 0.829 0.854 NNNNNTTNNNNNNNNN 0
7: 180 0.0003 1159 0.955 0.914 0.926 NNNNNNNTTNNNNNNN 0
8: 300 0.0003 1158 0.949 0.926 0.934 NNNNNNNNTTNNNNNN 0
9: c0 0.0003 1155 0.944 0.917 0.926 NNNNNNTTNNNNNNNN 0

12-13 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-13

12-14 12-14

Short Loop, pat 124, br 137681, 0.8908 0.9055 0.7441 (0.03700)
% Patterns # Branches gshre local corr Local History

0: 5555 0.0040 14753 0.987 0.981 0.912 TNTNTNTNTNTNTNTN 1
1: aaaa 0.0040 14730 0.859 0.978 0.461 NTNTNTNTNTNTNTNT 1
2: 9249 0.0022 8062 0.997 0.992 0.988 TNNTNNTNNTNNTNNT 1
3: 4924 0.0022 8055 0.997 0.998 0.998 NNTNNTNNTNNTNNTN 1
4: 2492 0.0022 8047 0.993 0.991 0.009 NTNNTNNTNNTNNTNN 1
5: db6d 0.0013 4864 0.713 0.915 0.065 TNTTNTTNTTNTTNTT 1
6: b6db 0.0013 4713 0.862 0.903 0.926 TTNTTNTTNTTNTTNT 1
7: 6db6 0.0012 4640 0.991 0.978 0.970 NTTNTTNTTNTTNTTN 1
8: bbbb 0.0008 3061 0.896 0.936 0.949 TTNTTTNTTTNTTTNT 1

Long Loop?, pat 32, br 185795, 0.9170 0.9052 0.9096 (0.04993)
0: fffe 0.0025 9204 0.902 0.930 0.913 NTTTTTTTTTTTTTTT 2
1: 8000 0.0025 9198 0.654 0.700 0.705 NNNNNNNNNNNNNNNT 2
2: 7fff 0.0022 8052 0.890 0.817 0.818 TTTTTTTTTTTTTTTN 2
3: ffbf 0.0018 6800 0.933 0.908 0.920 TTTTTTNTTTTTTTTT 2
4: feff 0.0018 6782 0.946 0.938 0.942 TTTTTTTTNTTTTTTT 2
5: ff7f 0.0018 6778 0.949 0.946 0.950 TTTTTTTNTTTTTTTT 2
6: fdff 0.0018 6738 0.947 0.941 0.946 TTTTTTTTTNTTTTTT 2
7: 1 0.0018 6690 0.955 0.945 0.942 TNNNNNNNNNNNNNNN 2
8: fffd 0.0018 6667 0.968 0.966 0.967 TNTTTTTTTTTTTTTT 2

12-14 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-14

12-15 12-15

Phase Change, pat 26, br 48190, 0.8453 0.9040 0.8470 (0.01295)
% Patterns # Branches gshre local corr Local History

0: c000 0.0012 4554 0.653 0.777 0.680 NNNNNNNNNNNNNNTT 3
1: e000 0.0009 3420 0.714 0.859 0.758 NNNNNNNNNNNNNTTT 3
2: f000 0.0008 2942 0.756 0.888 0.788 NNNNNNNNNNNNTTTT 3
3: fffc 0.0008 2878 0.908 0.960 0.959 NNTTTTTTTTTTTTTT 3
4: f800 0.0007 2642 0.786 0.917 0.827 NNNNNNNNNNNTTTTT 3
5: 3 0.0007 2572 0.968 0.952 0.951 TTNNNNNNNNNNNNNN 3
6: fc00 0.0007 2435 0.815 0.933 0.854 NNNNNNNNNNTTTTTT 3
7: fe00 0.0006 2225 0.836 0.936 0.876 NNNNNNNNNTTTTTTT 3
8: ff00 0.0006 2140 0.856 0.947 0.931 NNNNNNNNTTTTTTTT 3
9: ff80 0.0006 2061 0.854 0.941 0.934 NNNNNNNTTTTTTTTT 3

One Way, pat 2, br 2617433, 0.9917 0.9934 0.9897 (0.70337)
0: ffff 0.5151 1916950 0.993 0.996 0.993 TTTTTTTTTTTTTTTT 4
1: 0 0.1882 700483 0.988 0.986 0.982 NNNNNNNNNNNNNNNN 4

12-15 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-15

12-16 12-16
Steps in BHT Use on a Dynamically Scheduled Proc.

Register r1 not available until cycle ten1.

When branch in ID, read BHT and make prediction. (Cycle 1)

(Optional) Backup (checkpoint) register map (if present).

Execute branch in usual way and check prediction. (Cycle 10.)

If prediction correct, update BHT when branch commits (Cycle 11.).

If prediction wrong, start recovery process (does not occur here).

! Predict not taken, not taken.
Cycle: 0 1 2 3 10 11 12 13
bneq r1, TARGET IF ID 0:RS 0:RS ... 0:B 0:WC
xor r2, r3, r4 IF ID 5:EX 5:WB 5:C

6:C
...
TARGET:
and r5, r6, r7

1 Perhaps due to a cache miss, or maybe it depended on a long-latency floating-point operation, the reason is not
important

12-16 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-16

12-17 12-17

BHT use when branch taken, correctly predicted.

Register r1 not available until cycle 10.

When branch in ID, compute target, read BHT and make prediction. (Cycle 1).

Execute branch in usual way and check prediction. (Cycle 10.)

Commit branch after div. (Cycle 23).

! Predict taken, taken.
Cycle: 0 1 2 3 10 11 ... 21 22 23
div f0,f2, f4 ID DIV DIV WC
bneq r1, TARGET IF ID 0:RS 0:RS ... 0:B 0:WB C
xor r2, r3, r4 IFx

...
TARGET:
and r5, r6, r7 IF... C

12-17 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-17

12-18 12-18

BHT use when branch taken, incorrectly predicted, register map not backed up.

Register r1 not available until cycle 10.

When branch in ID, compute target, read BHT and make prediction. (Cycle 1).

Cycle 10: ooops, misprediction. Because register map not backed up, recovery must wait
until commit.

Cycle 23: Start recovery: Squash instructions in reorder buffer, start fetching correct path.

! Predict not taken, taken. Register map not backed up.
Cycle: 0 1 2 3 10 11 ... 21 22 23
div f0,f2, f4 ID DIV DIV WC
bneq r1, TARGET IF ID 0:RS 0:RS ... 0:B 0:WB C
xor r2, r3, r4 IF ID EX ...

...
TARGET:
and r5, r6, r7 IF

12-18 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-18

12-19 12-19

BHT use when branch taken, incorrectly predicted, register map backed up.

Register r1 not available until cycle 10.

When branch in ID, backup (checkpoint) register map, compute target, read BHT and make
prediction. (Cycle 1).

Cycle 10: ooops, misprediction. Squash reorder buffer past branch, switch to backed up
register map, start fetching correct path.

Cycle 23: Branch commits.

! Predict not taken, taken. Register map backed up.
Cycle: 0 1 2 3 10 11 ... 21 22 23
div f0,f2, f4 ID DIV DIV WC
bneq r1, TARGET IF ID 0:RS 0:RS ... 0:B 0:WB C
xor r2, r3, r4 IF ID EX

...
TARGET:
and r5, r6, r7 IF

12-19 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-19

12-20 12-20(m, n) Two-Level Correlating Predictor

Idea: Base branch decision on . . .

. . . the address of the branch instruction (as in the one-level scheme) . . .

. . . and the most recent branch outcomes (global history).

Global History:

The outcome of the most recent branches.

In an (m,n) predictor, interested in m most-recent branches.

Pattern History Table (PHT):

Memory for 2-bit counters, indexed (addressed) by some combination of global history and the
branch instruction address.

12-20 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-20

12-21 12-21Global History Example

! Loop always iterates 4 times.
! Branch below never taken.
bneq r2, SKIP N N
addd f0, f0, f2
SKIP:
addi r1, r0, #4
LOOP:
multd f0, f0, f2
subi r1, r1, #1
bneq r1, LOOP T T T N ... T T T N ...
! Cycle 10 20 30 40 50 110 120 130 140 150
!
! Global History (m=4), X: depends on earlier branches.
! 10 XXXN Human would predict taken.
! 20 XXNT Human would predict taken.
! 30 XNTT Human would predict taken.
! 40 NTTT Human would predict not taken.
! 50 TTTN

12-21 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-21

12-22 12-22PHT Indexing for (m, n) Predictor

Two methods of generating address for PHT:

gselect:Concatenate global history with branch address.

gshare:Exclusive-or global history with branch address.

gselect is easier to understand, but gshare uses PHT more efficiently.

12-22 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-22

12-23 12-23Global History and Dynamic Scheduling

Global history must be accurate.

Why that’s a problem:

! First branch: Predict not taken, taken. Register map backed up.
Cycle: 0 1 2 3 10 11 12 13 ... 21 22 23
div f0,f2, f4 ID DIV DIV WC
bneq r1, TARGET IF ID 0:RS 0:RS ... 0:B 0:WB C
beqz r2, SKIP IF ID 1:B ...
xor r2, r3, r4 IF ID EX ...

...
TARGET:
and r5, r6, r7 IF ID EX ...
beqz r4, LINE1 IF ID ...
Cycle: 0 1 2 3 10 11 12 13 ... 21 22 23

Cycle 2: beqz should see global history with bneq not taken.

Global history includes assumption that bneq not taken.

12-23 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-23

12-24 12-24

! First branch: Predict not taken, taken. Register map backed up.
Cycle: 0 1 2 3 10 11 12 13 ... 21 22 23
div f0,f2, f4 ID DIV DIV WC
bneq r1, TARGET IF ID 0:RS 0:RS ... 0:B 0:WB C
beqz r2, SKIP IF ID 1:B ...
xor r2, r3, r4 IF ID EX ...

...
TARGET:
and r5, r6, r7 IF ID EX ...
beqz r4, LINE1 IF ID ...
Cycle: 0 1 2 3 10 11 12 13 ... 21 22 23

Cycle 3: Now global history includes assumption that bneq and first beqz not taken.

Cycle 11: Ooops, bneq misprediction discovered.

Global history has two incorrect assumptions . . .

. . . unless they’re fixed prediction for second beqz won’t be accurate.

Cycle 12: beqz should see global history with bneq taken.

12-24 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-24

12-25 12-25Global History and Dynamic Execution

Global History in Two-Level Predictor with Dynamic Execution

Global history backed up (checkpointed) at each branch.

Predicted outcome shifted into global history.

If misprediction discovered, global history restored from backup . . .

. . . just as the register map can be.

12-25 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-25

12-26 12-26Target Prediction and Folding

Target Prediction:

Predicting the outcome and target of a branch.

Branch Target Buffer:

A table indexed by branch address holding a predicted target address.

Target Prediction

Put BTB in IF stage.

Use PC to read an entry from BTB.

If valid entry found, replace PC with predicted target.

With target correctly predicted, zero branch delay.

12-26 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-26

12-27 12-27Target Prediction Example

Static scheduled system (for clarity).

Cycle: 0 1 2 3 4 10 11 12 13 14
bneq r1, TARGET IF ID EX MEM WB IF ID EX MEM WB
xor r2, r3, r4 IF ID EX

TARGET:
and r5, r6, r7 IF ID EX MEM WB IF X

Cycle 0

BTB lookup and prediction. Predict taken.

Target from BTB will be clocked into PC.

12-27 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-27

12-28 12-28Target Prediction Example, continued.

Static scheduled system (for clarity).

Cycle: 0 1 2 3 4 10 11 12 13 14
bneq r1, TARGET IF ID EX MEM WB IF ID EX MEM WB
xor r2, r3, r4 IF ID EX

TARGET:
and r5, r6, r7 IF ID EX MEM WB IF X

Cycle 1

Start fetching predicted target.

Execute branch instruction (in ID).

Check predicted outcome and predicted target.

Correct predictions, continue execution.

12-28 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-28

12-29 12-29
Target Prediction Example, continued.

Cycle: 0 1 2 3 4 10 11 12 13 14
bneq r1, TARGET IF ID EX MEM WB IF ID EX MEM WB
xor r2, r3, r4 IF ID EX

TARGET:
and r5, r6, r7 IF ID EX MEM WB IF X

Cycle 10

BTB lookup and prediction. Predict taken.

Target from BTB will be clocked into PC.

Cycle 11

Start fetching predicted target.

Execute branch instruction (in ID).

Ooops, incorrect outcome prediction . . .

. . . replace target with nop . . .

. . . and clock correct target into PC.

12-29 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-29

12-30 12-30Target Prediction for Register-Indirect CTI

What BTB predicts for branch instructions:

That instruction will be a CTI.

If CTI is a branch, that branch is taken.

CTI target.

For branches and non-indirect jumps (j, jal). . .
. . . predicting target is easy, since target always same.
bneq r1, LOOP ! Target always PC + 4 + 4 * LOOP
j LINEJ ! Target always PC + 4 + 4 * LINEJ

For register-indirect jumps (jr, jalr) . . .

. . . prediction depends on predictable behavior.
jr r1 ! Target is in r1. Can be different each time.
jalr r1 ! Target is in r1. Can be different each time.

12-30 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-30

12-31 12-31Behavior of Register-Indirect Jumps

Predictability depends on how jumps used.

Major Uses

• Procedure Passed as Parameter

For example, function passed to the C library’s qsort.

These rarely change so target is predictable.

• Case Statements

These change, and so prediction more difficult.

12-31 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-31

12-32 12-32Target Prediction

Two Methods

Keep a stack of (what appear to be) return addresses. Used for procedure return instructions.

Predict last target. Used for all other instructions.

Predict Last Target

Used for everything except return instructions.

Last time instruction executed target address stored in BTB.

If entry found and predicted taken (for a branch), last target address used.

Effectiveness:

Perfect for non-indirect jumps and branches (if taken).

Reasonably effective on indirect branches.

12-32 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-32

12-33 12-33

Predict Return Address

Used for return instruction. (An instruction used for a procedure return, which may not
have the mnemonic return).

Hardware keeps a stack of return addresses.

BTB stores whether instruction is a return.

When a call instruction encountered push return address on stack.

When BTB identifies instruction as a return target address is popped off stack.

Effectiveness depends on whether call and return instructions can be identified.

12-33 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-33

12-34 12-34Target Prediction Example

Consider code for C switch statement:

! Possible code for a switch statement.
! switch(r2) { case 0: foo(); break; case 1: bar(); break; ... }
! Set r1 to base of switch address table.
lhi r1, #0x1234
ori r1, r1, #0x5670
! Multiply switch index by stride of table (4 bytes per address).
slli r3, r2, #2
! Get address of case code address.
add r1, r1, r3
! Get case code address.
lw r4, 0(r1)
! Jump to case code.
jr r4

If r2 rarely changes, jr predictable.

12-34 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-34

12-35 12-35BTB Contents

Possible BTB Contents

Target address.

History information (replaces BHT).

Tag, to detect collisions.

12-35 EE 4720 Lecture Transparency. Formatted 12:24, 14 November 2001 from lsli12. 12-35

