
11-1 11-1This Set

These slides do not give detailed coverage of the material. See class notes and solved
problems (last page) for more information.

Text covers multiple-issue machines in Chapter 4, but does not cover most of the topics
presented here.

Outline

• Multiple Issue Introduction

• Superscalar Machines

• VLIW Machine

• Sample Problems

11-1 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-1



11-2 11-2Multiple Issue

Multiple-Issue Machine:

A processor that can sustain execution of more than one instruction per cycle.

n-Way Processor:

A multiple issue machine that can sustain execution of n instructions per cycle.

Single-Issue Machine:

A processor that can sustain execution of at most one instruction per cycle. A neologism for
the type of processor covered in Chapter 3 and part of Chapter 4.

Sustain Execution of n IPC:

Achieve a CPI of 1
n for some code fragment . . .

. . . written by a friendly programmer . . .

. . . to avoid cache misses and otherwise avoid stalls.

11-2 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-2



11-3 11-3Types of Multiple Issue Machines

Superscalar Processor:

A multiple-issue machine that implements a conventional ISA (such as DLX and SPARC).

Code need not be recompiled.

General-purpose processors were superscalar starting in early 1990’s.

VLIW Processor:

A multiple-issue machine that implements a VLIW ISA . . .

. . . in which simultaneous execution considered. (More later.)

Since VLIW ISAs are novel, most code must be re-compiled.

Idea developed in early 1980’s, . . .

. . . so far used in special-purpose and stillborn commercial machines, . . .

. . . will be used in Intel’s next generation processor.

Intel’s Itanium will implement the IA-64 VLIW ISA (Intel’s) name.

11-3 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-3



11-4 11-4Superscalar Machines

n-Way Superscalar Machine Construction

Start with a single-issue machine.

Duplicate hardware so each part can handle n instructions per cycle.

Don’t forget about control and data hazards.

11-4 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-4



11-5 11-5Superscalar Difficulties

Register File

Single-issue: 2 reads, 1 write per cycle.

n-way: 2n reads, n writes per cycle.

Dependency Checking (Static Scheduling) For ALU Instructions

Single issue, about 4 comparisons per cycle.

n-way, about n(2(2n + n − 1) = 6n2 − 2n comparisons.

Loads

Single issue, only following instruction would have to stall (if dependent).

n-way, up to the next 2n − 1 instructions would have to stall (if dependent).

11-5 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-5



11-6 11-6Superscalar Difficulties

Instruction Fetch

Memory system may be limited to aligned fetches . . .

. . . for example, if branch target is 0x1114 . . .

. . . instructions starting at 0x1110 may be fetched (and the first ignored) . . .

. . . wasting fetch bandwidth.

11-6 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-6



11-7 11-7Typical Superscalar Characteristics

Instruction Fetch

Instructions fetched in aligned blocks.

Unneeded instructions ignored.

Instruction Decode

Must issue all instructions fetched before processing next block.

Execution

Not all hardware is duplicated. (Don’t expect n divide units.)

Some instruction pairs forbidden.

For example, early processors could simultaneously start one floating-point and one integer
instruction.

11-7 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-7



11-8 11-8Superscalar Execution Example

Two-Way Superscalar Example (Similar to 1998 Final Question)

Machine Characteristics

The program below executes on a 2-way, dynamically scheduled superscalar processor. The
processor’s features are summarized in the list below, the table gives details of the functional
units. (The load/store unit computes the address in its first cycle and does the actual access
in its second cycle. Address computation starts as soon as the address operand is ready.)

♦ Two-way superscalar instruction issue.
♦ Dynamically scheduled (see table), re-order buffer.
♦ CDB can accommodate results from any two functional units in any cycle.
♦ Reorder buffer for precise exceptions.
♦ Reorder buffer can retire as many as two instructions per cycle.
♦ Reservation stations, not reorder buffer, used for renaming.
♦ Branches do not have delay slots.

11-8 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-8



11-9 11-9

Name Abbreviation Latency Initiation Reservation
Interval Station Nums

Load/Store L 1 1 0-1
Integer EX 0 1 2-3
F.P. Add A 1 1 4-5
F.P. Mul. M 5 2 6-7
Branch BR 0 1 8-9
F.P. Divide DIV 22 23 10-11

! When loop first entered r2-r1 large (loop iterates many times).
LOOP: ! LOOP = 0x1000
slt r3, r1, r2
lf f0, 0(r1) ! Don’t overlook true dependencies on f0!
multf f0, f0, f2
addf f0, f0, f3
sf 4(r1), f0
addi r1, r1, #8
bnez r3, LOOP
div f4, f5, f6

11-9 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-9



11-10 11-10

Superscalar Example

Numbers before stage names indicate reservation station number. (Reorder buffer entry
numbers not shown).

Color (or shading) indicates iteration: IF First, IF Second, IF Third, IF Fourth.
Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
slt r3, r1, r2 IF ID 3:EX 3:WC IF ID 2:EX 2:WB :C

IF ID 2:EX 2:WB :C
IF ID 3:RS

lf f0, 0(r1) IF ID 0:L1 0:L2 0:WC IF ID 0:L1 0:L2 0:WB :C
IF ID ---> 1:L1 1:L2 1:WB :C

IF ID 0:L1
mulf f0, f0, f2 IF ID 6:RS 6:M1 6:M1 6:M2 6:M2 6:M3 6:M3 6:WC

IF ID 7:RS 7:M1 7:M1 7:M2 7:M2 7:M3 7:M3 7:WC
IF ---> ID 6:RS 6:M1 6:M1 6:M2 6:M2 6:M3

IF ID
addf f0, f0, f3 IF ID 4:RS 4:RS 4:RS 4:RS 4:RS 4:RS 4:RS 4:A1 4:A2 4:WC

IF ID 5:RS 5:RS 5:RS 5:RS 5:RS 5:RS 5:RS 5:A1 5:A2 5:WC
IF ---> ID 4:RS 4:RS 4:RS 4:RS 4:RS 4:RS

IF ID
sf 4(r1), f0 IF ID 1:L1 1:RS 1:RS 1:RS 1:RS 1:RS 1:RS 1:RS 1:L2 1:WC

IF ID ---> 0:L1 0:RS 0:RS 0:RS 0:RS 0:RS 0:RS 0:L2 0:WC
IF ID ---> 1:L1 1:RS 1:RS 1:RS

IF
addi r1, r1, #8 IF ID 2:EX 2:WB :C

IF ID 2:EX 2:WB :C
IF ID 2:EX 2:WB IF

bnez r3, LOOP IF ID 8:BR 8:WB :C
IF ---> ID 8:BR 8:WB :C

IF ---> ID 8:BR 8:WB
div fr,f5,f6 IF ID x IF ---> ID x IF ---> ID x
Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

11-10 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-10



11-11 11-11

Comments on previous example.

Because machine is 2-way, at each cycle two instructions can be fetched, decoded, write back
results, and committed (retired).

Because CDB can handle two results, there can be two writebacks per cycles, as in cycle 13.

At cycles 9, 13, and 16 execution stalls because there are no free load/store RS’s.

As with all multiple-issue processors considered here, all instructions must leave ID before
another group can enter. This can be seen in the stall at cycles 9, 13, and 16 caused by one
instruction in ID but affecting both instructions in IF.

The address of CYCLE must be a multiple of 8. (If it weren’t, lf would not be fetched in the
same cycle as slt.).

11-11 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-11



11-12 11-12VLIW and EPIC

Very-Long Instruction Word (VLIW):

An ISA or processor in which instructions are grouped into bundles which are designed to be
executed as a unit.

Explicitly Parallel Instruction Computing:

Intel’s version of VLIW. Here, VLIW includes EPIC.

11-12 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-12



11-13 11-13

Current Examples

Texas Instruments VelociTI (Implemented in the C6000 Digital Signal Processor).

Intended for signal processors, which are usually embedded in other devices . . .

. . . and do not run general purpose code.

11-13 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-13



11-14 11-14

Intel IA-64 ISA (Implemented by Itanium).

Intended for general purpose use.

128 64-bit General [Purpose Integer] Registers

128 82-bit FP Registers

Many additional special-purpose registers.

Instructions grouped into 128-bit bundles.

Each bundle includes three 41-bit instructions and five template bits.

Template bits specify dependency between instructions and the type of instruction in each
slot.

Makes extensive use of predication.

Implementation, Itanium.

11-14 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-14



11-15 11-15

Tera MTA implemented by the Tera Computer Company

Intended for scientific computing.

In addition to VLIW has other unique features (not discussed).

32 64-bit registers.

Branches can examine any subset of 4 condition code registers.

Instructions grouped into 64-bit bundles.

Each bundle holds three instructions, with restrictions: one load/store, one ALU, and one
ALU or branch.

Bundle specifies number of following non-dependent bundles in a lookahead field.

11-15 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-15



11-16 11-16VLIW DLX

VLIW Version of DLX: DLXV

128-bit bundles holding three instructions:

Each instruction consists of a DLX instruction . . .

. . . and a 6-bit predicate field.

Predicate field specifies an integer register and test (= 0 or 6= 0).

Bundle also includes a 3-bit lookahead field and a 1-bit serial bit.

Lookahead field specifies number of following non-data-dependent bundles.

If serial bit is 1 dependencies within bundle are honored . . .

. . . if bit is 0 then source operands refer to values produced in preceding bundles.

Layout: three DLX instructions (96 bits) followed by predicate fields, lookahead field, and
serial bit.

11-16 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-16



11-17 11-17VLIW Bundle and Slot Definitions Definitions

Bundle: a.k.a. packet

The grouping of instructions and dependency information which is handled as a unit by a
VLIW processor.

Slot:

Place (bit positions) within a bundle for an instruction.

A typical VLIW ISA fits three instructions into a 128-bit bundle . . .

. . . such a bundle is said to have three slots.

Example: IA-64

Bundle Size, 128 bits; holds three instructions.

Slot 2

127 87

Slot 1

86 46

Slot 0

45 5

dep. info

4 0

11-17 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-17



11-18 11-18Instruction Restrictions In Bundles

ISA may forbid certain instructions in certain slots . . .

. . . e.g., no load/store instruction in Slot 1.

Tera-MTA: Three slots per 64-bit bundle. (Slot 0, Slot 1, Slot 2.)

Slot 0: Load/Store

Slot 1: ALU

Slot 2: ALU or Branch

IA-64: Three slots per 128-bit bundle.

Slot 0: Memory or branch.

Slot 1: Any instruction

Slot 2: Any instruction that doesn’t access memory.

DLXV: Three slots per 128-bit bundle.

Slot 0, 1, 2: Any instruction.

11-18 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-18



11-19 11-19Dependency Information in Bundles

Common feature: Specify boundary between dependent instructions.

add r1, r2, r3
sub r4, r5, r6
! Boundary: because of r1 instruction below might wait.
xor r7, r1, r8

Because dependency information is in bundle less hardware is needed to detect dependencies.

How Dependency Information Can Be Specified (Varies by ISA):

• Lookahead:

Number of bundles before the next true dependency.

• Stop:

Next instruction depends on earlier instruction.

• Serial Bit:

If 0, no dependencies within bundle(can safely execute in any order).

11-19 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-19



11-20 11-20Specifying Dependencies Using Lookahead

Used in: Tera MTA.

Lookahead:

The number of consecutive following bundles not dependent on current bundle.

If lookahead 0, may be dependencies between current and next bundle.

If lookahead 1, no dependencies between current and next bundle, but may be dependencies
between current and 2nd following bundle.

Setting the lookahead value:

Compiler analyzes dependencies in code, taking branches into account.

Sets lookahead based on nearest possible dependency.

11-20 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-20



11-21 11-21Lookahead Example: (Two-instruction bundles.)

Bundle1: add r1, r2, r3
add r4, r5, r6
Lookahead = 1 ! Bundle 2 not dependent.

Bundle2: add r7, r7, r9
add r10, r11, r12
Lookahead = 2 ! Bundle 3 and Bundle 1 not dependent.

Bundle3: add r2, r1, r14
bneq r20, Bundle1
Lookahead = 0 ! Bundle 1 is dependent.

Bundle4: add r18, r8, r19
bneq r21, Bundle1
Lookahead = 11 ! Assuming twelfth bundle below uses r18.

Bundle5: nop
nop

! (Next 10 bundles contain only nops)

11-21 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-21



11-22 11-22Specifying Dependencies Using Stops

Used by: IA-64

Stop:

Boundary between instructions with true dependencies and output dependencies.

Stop (and taken branches) divide instructions into groups.

Groups can span multiple bundles.

Within a group true and output register dependencies are not allowed, with minor exceptions.

Memory dependencies are allowed.

Assembler Notation (IA-64): Two consecutive semicolons: ;;.

Example:

L1: add r1, r2, r3
L2: add r4, r5, r6 ;;
L3: add r7, r1, r0 ;;
L4: add r8, r7, r0
L5: add r9, r4, r0
! Three groups: Group 1: L1, L2; Group 2: L3; Group 3: L4, L5

11-22 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-22



11-23 11-23

DLXV Assembly Notation

Example:

{ P 3 ! Exec. in parallel or ignore dep. Lookahead = 3
(r10) add r1, r2, r3 ! Execute if r10 not zero.
(~r11) sub r4, r1, r5 ! Execute if rll is zero.

and r6, r7, r8 ! Always execute.
}
{ S 0 ! Execute serially or honor dep. Lookahead = 0
(r10) add r20, r22, r23 ! Execute if r10 not zero.
(~r11) sub r24, r20, r25 ! Execute if rll is zero.
(~r0) and r26, r27, r28 ! Always execute.

}

11-23 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-23



11-24 11-24

DLXV Assembly Notation

DLX instruction mnemonic . . .

. . . with instruction preceded by predicate . . .

. . . and group of three surrounded by braces ({}) . . .

. . . starting with serial bit and lookahead.

Predicate format:

Register number possibly preceded by tilde.

Without tilde, instruction executes if register value non-zero.

With tilde, instruction executes if register value zero.

Serial Bit Mnemonic

If S then honor dependencies in bundle (serial bit = 1) . . .

. . . if P then serial bit = 0.

11-24 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-24



11-25 11-25

Lookahead Menomonic

Integer indicating lookahead value.

11-25 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-25



11-26 11-26VLIW Sample Problem

Based on Spring 1999 HW 4, Problem 7:

Rewrite the code below for the VLIW DLX ISA presented in class. Instructions can be re-
arranged and register numbers changed. In order of priority, try to minimize the number of
bundles, minimize the use of the serial bit, and maximize the value of the lookahead field. When
determining the lookahead assume that any register can be used following the last bundle in your
code.

LOOP:
lf f0, 0(r1)
multf f1, f0, f0
multf f2, f0, f1
addf f3, f3, f0
lf f4, 8(r1)
sf 4(r1), f1
multf f1, f4, f4
multf f2, f4, f1
addi r1, r1, #16
sub r3, r4, r5
xor r6, r7, r8
or r9, r10, r11

11-26 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-26



11-27 11-27

Solution:

LOOP:
{ P 0
lf f0, 0(r1)
lf f4, 8(r1)
sub r3, r4, r5
}
{ P 0
multf f1, f0, f0
multf f11, f4, f4
addf f3, f3, f0
}
{ P 1
sf 4(r1), f1
multf f12, f0, f1
multf f2, f4, f11
}
{ P 0
addi r1, r1, #16
xor r6, r7, r8
or r9, r10, r11
}

11-27 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-27



11-28 11-28Sample Problems

Superscalar

1998 Final Exam, Problem 2. (Includes later material on branches.)

1998 Homework 5, Problems 1, 2. (Static scheduled superscalar.)

1998 Homework 5, Problem 3. (Includes later material on branches.)

1997 Final Exam problem 2.

VLIW

1998 Homework 5, Problem 4.

11-28 EE 4720 Lecture Transparency. Formatted 15:44, 14 November 2001 from lsli11. 11-28


