
09-1 09-1Multicycle Pipeline Operations

Material may be added to this set.

Material Covered

Section 3.7.

Long-Latency Operations (Topics)

Typical long-latency instructions: floating point

Pipelined v. non-pipelined execution units

Initiation interval and latency

Placement in Chapter-3 DLX pipeline

Timing diagrams

09-1 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-1

09-2 09-2Long-Latency Instructions (Operations)

Common Long-Latency Instructions

Fastest (shortest—but still long—latency): Floating-Point Add, Subtract, Conversions

DLX: addf, addd, cvti2f (convert integer to float), ltd (compare less-than of doubles), etc.

Intermediate Speed: Multiply

DLX: multd, multf.

Slowest Speed: Divide, Modulo, Square Root

DLX: divd, divf.

09-2 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-2

09-3 09-3Implementation of Long-Latency Instructions

Implementation balances cost and performance.

Low Cost: Unpipelined, Single Functional Unit, Data Recirculates

Whole functional unit occupied by instruction during computation . . .

. . . so it can execute only one instruction at a time.

Intermediate Cost: Multiple Unpipelined Functional Units

Functional units occupied by instruction during computation . . .

. . . each can execute a different instruction.

Cost a multiple of single-unit cost.

Highest Cost: Pipelined Functional Unit

Functional unit pipelined, at best each stage can hold a different instruction.

Cost disadvantage depends on how unpipelined units implemented.

09-3 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-3

09-4 09-4Floating Point in Chapter-3 DLX Implementation

Floating Point Functional Units

• FP Add

Four stages, fully pipelined: Latency 3, Initiation Interval 1.

Used for FP Add, FP Subtract, FP Comparisons, etc.

• FP Multiply

Seven stages, fully pipelined: Latency 6, Initiation Interval 1.

Used for FP Multiply and Integer Multiply.

• FP Divide

Twenty five stages, unpipelined: Latency 24, Initiation Interval 24.

09-4 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-4

09-5 09-5Hazards With Long-Latency Instructions in Chapter-3 Pipeline

Structural Hazards

Functional Unit Structural Hazards

Because an instruction can occupy a functional unit (e.g., DIV) more than one cycle . . .

. . . a following instruction needing that unit may be stalled.

(Occurs when initiation interval greater than one.)

Register Write (MEM Stage) Structural Hazards

Because different units have different latencies . . .

. . . instructions that started at different times can finish at the same time . . .

. . . only one can write results (unless extra register file ports added).

Data Hazards

RAW Hazards

As with integer operations, result not ready in time.

With long-latency operations instructions may wait longer.

09-5 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-5

09-6 09-6

WAW Hazards

Occurs when two nearby instructions write same register . . .

. . . and second instruction finishes first.

WAR Hazards

Cannot occur in Chapter-3 pipeline because instructions start in order.

Precise Exceptions

A headache because an instruction can be ready to write . . .

. . . long before a preceding instruction raises an exception.

09-6 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-6

09-7 09-7Handling Functional Unit Structural Hazards

Example, 4-cycle latency unpipelined divide.

Unless FU changed, instructions must be stalled to avoid hazard.

divd f0, f2, f4 IF ID DIV DIV DIV DIV DIV WB
divd f6, f8, f10 IF ID --------------> DIV DIV DIV DIV WB

Hazard easily handled:

Units provide a ready-next-cycle signal to ID stage.

Instruction stalled if ready-next-cycle for needed unit is 0.

09-7 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-7

09-8 09-8

Eliminating Hazards

Provide more than one functional unit.

Example, provide two 4-cycle latency divide units, DVa and DVb.

divd f0, f2, f4 IF ID DVa DVa DVa DVa DVa WB
divd f6, f8, f10 IF ID DVb DVb DVb DVb DVb WB

Pipeline functional unit.

Example, use 5-cycle latency, initiation interval 2, pipelined divide . . .

. . . and live with single stall cycle.

divd f0, f2, f4 IF ID DV0 DV0 DV1 DV1 DV2 DV2 WB
divd f6, f8, f10 IF ID --> DV0 DV0 DV1 DV1 DV2 DV2 WB

09-8 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-8

09-9 09-9

Handling Register Write Structural Hazards

Example (stall to avoid hazard in cycle 8)

!Cycle 0 1 2 3 4 5 6 7 8 9
multd f0, f2, f4 IF ID M0 M1 M2 M3 M4 M5 WB
addi r1, r1, #1 IF ID EX MEM WB
addd f6, f8, f10 IF ID --> A0 A1 A2 A3 WB

09-9 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-9

09-10 09-10Handling Register Write Structural Hazards

Method 1: Delay instruction in ID. (Used above.)

Include a shift register called a reservation register.

Each cycle the reservation register is shifted.

A 1 indicates a “reservation” to enter WB.

Bit position indicates time . . .

. . . with the LSB indicating two cycles later . . .

. . . the next bit indicating three cycles later . . .

. . . and so on.

The ID stage controller, based on the opcode of the instruction . . .

. . . knows the number of cycles before WB will be entered.

It checks the corresponding reservation register bit . . .

. . . if it’s 1 then IF and ID are stalled . . .

. . . if it’s 0 then the bit is set to 1 and the instruction proceeds.

If such a stall occurs the reservation register is still shifted . . .

. . . and so a 0 will eventually move into the bit position.

09-10 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-10

09-11 09-11

Method 2: Delay instructions ready to enter WB.

Each functional unit provides a signal . . .

. . . indicating when it has an instruction ready to enter WB.

One of those signals is chosen (using some method) . . .

. . . the corresponding instruction moves to WB . . .

. . . while the others are stalled.

09-11 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-11

09-12 09-12

Comparison of Method 1 and 2

Method 1 is easier to implement . . .

. . . since logic remains in one stage.

In contrast, logic for method 2 would span several stages . . .

. . . since stages back to IF might need to be stalled . . .

. . . and so critical paths would be long.

Method 2 is more flexible . . .

. . . since priority could be given to longer-latency instructions.

09-12 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-12

09-13 09-13

Handling RAW Hazards

The interlock mechanism for RAW hazards . . .

. . . must keep track of registers with pending writes . . .

. . . and use this information to stall instructions.

Consider, add f1, f2, f3.

Check if any uncompleted preceding instructions write f2 or f3.

If so, stall until register(s) written or can be bypassed to adder.

09-13 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-13

09-14 09-14

Possible RAW Interlock Implementations.

Brute Force: Check all following stages

As done for integer operations, check following stages . . .

. . . for pending write to register.

Each stage of every pipelined unit must be checked.

Too expensive.

Register file includes ready bit for each register.

Ready bit normally 1, indicating no pending writes (so value valid).

When instruction issued, bit set to 0 . . .

. . . when instruction completes and result written, set back to 1.

Instruction stalls if either operand’s ready bit is 0 . . .

. . . and cannot be bypassed.

09-14 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-14

09-15 09-15

WAW Hazards

Example with 3-stage pipelined multiply and one-stage add, no MEM.

mulf f0, f1, f2 IF ID M0 M1 M2 WB
addf f0, f3, f4 IF ID A0 WB ! Incorrect execution!!

Handling WAW Hazards

The interlock mechanism for RAW hazards handles WAW hazards in which there is an
intervening read.

Example with 3-stage pipelined multiply and one-stage add, no MEM.

mulf f0, f1, f2 IF ID M0 M1 M2 WB
subf f5, f0, f6 IF ID -----> A0 WB
addf f0, f3, f4 IF -----> ID A0 WB ! No problem.

If there is no intervening write the earlier instruction is squashed.

mulf f0, f1, f2 IF ID M0x
addf f0, f3, f4 IF ID A0 WB

09-15 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-15

09-16 09-16

WAR Hazards

Possible when register read delayed.

Can’t happen in Chapter-3 DLX because instructions

(1) read registers in ID

(2) pass through ID in program order

(3) and produce results only after leaving ID.

Consider:

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11
multf f0, f1, f2 IF ID M0 M1 M2 M3 M4 M5 M6 M7 WB
addf f1, f3, f4 IF ID A0 A1 A2 A3 WB

There would be a WAR hazard if addf wrote f1 before multf read it.

That can’t happen since multf would leave ID (with f1) as addf just enters ID.

09-16 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-16

09-17 09-17CPI and Multicycle Operations

CPI more sensitive to dependencies between instructions.

CPI Loop Example

Consider:

LOOP:
ld f0, 0(r1)
addi r1, r1, #8
gtd f0, f2
bfpt LOOP
addi r2, r2, #1
j LOOP
xor r3, r4, r5

Note dependency between gtd and bfpt.

What is the CPI during the execution of this loop?

09-17 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-17

09-18 09-18

When branch not taken:

LOOP:
Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13
ld f0, 0(r1) IF ID EX MEM WB IF ID EX
addi r1, r1, #8 IF ID EX MEM WB IF ID
gtd f0, f2 IF ID A0 A1 A2 A3 WB IF
bfpt LOOP IF ID -------------> EX MEM WB
addi r2, r2, #1 IF -------------> ID EX MEM WB
j LOOP IF ID EX MEM WB
xor r3, r4, r5 IF

Note: Second iteration will execute exactly as first.

Therefore, can base iteration time on corresponding points in consecutive iterations.

By inspection of diagram, iteration time: 11 cycles. Instructions: 6.

For a large number of iterations. CPI: 11
6 = 1.8333.

09-18 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-18

09-19 09-19

When branch taken.

LOOP:
Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13
ld f0, 0(r1) IF ID EX MEM WB IF ID EX MEM WB
addi r1, r1, #8 IF ID EX MEM WB IF ID EX MEM
gtd f0, f2 IF ID A0 A1 A2 A3 WB IF ID EX
bfpt LOOP IF ID -------------> EX MEM WB IF ID
addi r2, r2, #1 IF -------------> x IF
j LOOP
xor r3, r4, r5

Note: Second iteration will execute exactly as first.

Iteration time: 9 cylces. Instructions: 4.

For a large number of iterations: CPI is 9
4 = 2.25.

09-19 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-19

09-20 09-20

Precise Exceptions

Problem is registers written out of order . . .

. . . so some registers must be unwritten . . .

. . . so that when handler starts . . .

. . . it must seem as though . . .

. . . all instructions before faulting instructions executed . . .

. . . while no instructions after faulting instruction execute.

multf f0, f1, f2 IF ID M0 M1 M2 M3 M4 M5 *M6* WB
addf f1, f3, f4 IF ID A0 A1 A2 A3 WB

To do this either . . .

. . . add lots of stalls so instructions do finish in order . . .

. . . limit those instructions that can raise precise exceptions . . .

. . . or need to unexecute instructions.

The first option is fine for debugging, too slow otherwise.

The second option requires lots of hardware.

09-20 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-20

09-21 09-21Stalling to Maintain Precise Exceptions

Method 1: Stall so that instructions complete in order.

multf f0, f1, f2 IF ID M0 M1 M2 M3 M4 M5 M6 WB
addf f1, f3, f4 IF ID ---------> A0 A1 A2 A3 WB

This works, (WB in program order) but reduces performance.

09-21 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-21

09-22 09-22

Method 2: Early Detection of Exceptions

FP unit raises exceptions early in computation . . .

. . . if computation passes that point, it will finish without exceptions.

For example, 26-cycle DIV unit may check operands by cycle 3 . . .

. . . if computation reaches cycle 4 there is no possibility of an exception.

Instructions only stall until preceding instruction checked for exceptions.

For example, suppose the FP multiply unit finds exceptions by end of M5.

Then at cycle 8 (below) addf can write (no chance of an exception in M6).

Cycle: 0 1 2 3 4 5 6 7 8 9
multf f0,f1,f2 IF ID M0 M1 M2 M3 M4 M5 M6 WB
addf f1,f3,f4 IF ID -> A0 A1 A2 A3 WB

09-22 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-22

09-23 09-23

Method 3: Have precise and non-precise FP operations.

Let the names of imprecise instructions end in ip.

Second addf doesn’t stall since an exception in multfip need not be precise.

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
multf f0,f1,f2 IF ID M0 M1 M2 M3 M4 M5 M6 WB
addf f1,f3,f4 IF ID ---------> A0 A1 A2 A3 WB
multfip f5,f6,f7 IF ---------> ID M0 M1 M2 M3 M4 M5 M6 WB
addf f6,f8,f9 IF ID A0 A1 A2 A3 WB

09-23 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-23

09-24 09-24

Method 4: FP instructions precise when followed by special test instruction.

Call the special instruction testexc.

No stalls (and imprecise exceptions) where testexc not used.

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
multf IF ID M0 M1 M2 M3 M4 M5 M6 WB
testexc IF ID -----------------> EX MEM WB
addf IF -----------------> ID A0 A1 A2 A3 WB
multf IF ID M0 M1 M2 M3 M4 M5 M6 WB
addf IF ID A0 A1 A2 A3 WB

09-24 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-24

09-25 09-25

Unexecuting Instructions

An instruction is unexecuted . . .

. . . by restoring the previous contents of any register it wrote.

Method 1: History File

History file holds replaced values.

These are used to undo writes.

09-25 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-25

09-26 09-26

Method 2: Writes to register file are buffered.

Register writes (register number and new value) . . .

. . . are first placed in a buffer . . .

. . . possibly out of program order.

Writes from buffer to register file performed in order . . .

. . . waiting for long-latency operations to complete.

Register reads check the buffer first, then the register file.

When an exception occurs . . .

. . . only writes preceding the faulting instruction . . .

. . . are made from the buffer to the register file.

Disadvantage: Checking both buffer and register file is time-consuming.

09-26 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-26

09-27 09-27

Method 3: Future File

Two register files maintained, main and future.

Future file written as instruction complete . . .

. . . main file written in program order.

Future file is used for reading registers.

At an exception, . . .

. . . main file updated up to faulting instruction . . .

. . . future file is effectively erased . . .

. . . its contents replaced by main register file before handler starts.

09-27 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-27

09-28 09-28Performance of FP in the Chapter-3 DLX Implementation

Stalls per FP operation on SPEC 92 FP benchmarks.

Number of stalls

0.0 25.05.0 10.0 20.015.0

FP SPEC
benchmarks

doduc

ear

hydro2d

mdljdp

su2cor

0.6
18.6

1.6
1.5

0.7

0.0
24.5

2.9
1.2

2.1

0.0
0.4

3.2
2.5

2.3

0.0
12.4

2.5
2.0

1.6

2.0
15.4

3.7
1.7
1.7

Compares MultiplyAdd/subtract/convert

Divide structuralDivide

FIGURE 3.48 Stalls per FP operation for each major type of FP operation.

Running SPEC 92 bench-
marks on DLX compiled
using old version of gcc.

Uses perfect cache.

Value indicates stall cycles
per instruction type.

E.g., running doduc, there
are an average of 1.7 stall
cycles due to each com-
pare.

Stall cycles are due to RAW
hazards except for divide
structural bars.

09-28 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-28

09-29 09-29

Number of stalls determined by:

• latency of functional unit,

• characteristics of program, and

• quality of compiler.

Example:

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
multf f0,f1,f2 IF ID M0 M1 M2 M3 M4 M5 M6 WB
addf f3,f0,f4 IF ID ---------------------> A0 A1 A2 A3 WB

Here, six stall cycles “charged” to multf.

Lower latency (better functional unit) would mean fewer stall cycles.

09-29 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-29

09-30 09-30

Example, better scheduling:

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
multf f0,f1,f2 IF ID M0 M1 M2 M3 M4 M5 M6 WB
gtf f5,f6,f7 IF ID A0 A1 A2 A3 WB
subd f8,f10,f12 IF ID A0 A1 A2 A3 WB
addf f3,f0,f4 IF ID -------------> A0 A1 A2 A3 WB

Here multf charged with only four cycles because of gtf and subd.

The existence of such instructions depends on program characteristics.

Discovery and scheduling (arrangement) of such instructions depends on compiler.

09-30 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-30

09-31 09-31Performance of FP in the Chapter-3 DLX Implementation

Number of stalls

0.00 1.000.200.10 0.40 0.80 0.900.60 0.700.30 0.50

FP SPEC
benchmarks

doduc

ear

hydro2d

mdljdp

su2cor

0.01
0.01
0.02

0.61

0.00
0.03

0.10
0.88

0.00
0.04

0.22
0.54

0.00
0.07
0.09

0.52

0.08
0.08
0.07

0.98

FP compare stalls

FP structural

FP result stalls

Branch/load stalls

FIGURE 3.49 The stalls occurring for the DLX FP pipeline for the five FP SPEC
benchmarks.

Running SPEC 92 bench-
marks on DLX compiled
using old version of gcc.

Uses perfect cache.

Value indicates stalls per
instruction by cause.

Stalls caused primarily by
RAW hazards.

09-31 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-31

09-32 09-32

Pipeline CPI

0.00

3.00

0.50

1.00

2.00

1.50

2.50

SPEC92 benchmark
co

m
pr

es
s

eq
nt

ot
t

es
pr

es
so gc

c li
do

du
c

ea
r

hy
dr

o2
d

m
dlj

dp
su

2c
or

Load stalls Branch stallsBase

FP structural stallsFP result stalls

Performance of MIPS R4000.

Running SPEC 92 bench-
marks on R4000.

In R4000:

Load latency is two cycles.

Uses perfect cache.

Branch delay two cycles.

FP functional units par-
tially pipelined.

09-32 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-32

09-33 09-33Dependencies

Dependency:

A relationship between two instructions . . .

. . . indicating that their execution should be in program order.

If there is a dependency between instruction A and instruction B . . .

. . . and B follows A in program order . . .

. . . then B is said to be dependent on A.

If B is dependent on A then A should normally execute before B.

Dependency Types:

• True, Data, or Flow Dependence (Three different terms used.)

• Name Dependence

• Control Dependence

09-33 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-33

09-34 09-34Data Dependence

Data Dependence: (a.k.a., True and Flow Dependence)
A dependence between two instructions . . .

. . . indicating data needed by the second is produced by the first.

Example:

add r1, r2, r3
sub r4, r1, r5
and r6, r4, r7

The sub is dependent on add (via r1).

The and is dependent on sub (via r4).

The and is dependent add (via sub).

Execution may be incorrect if . . .

. . . a program having a data dependence . . .

. . . is run on a processor having an uncorrected RAW hazard.

09-34 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-34

09-35 09-35Name Dependencies

There are two kinds: antidependence and output dependence.

Antidependence:

A dependence between two instructions . . .

. . . indicating a value written by the second . . .

. . . that the first instruction reads.

Antidependence Example

add r1, r2, r3
sub r2, r4, r5

sub is antidependent on the add.

Execution may be incorrect if . . .

. . . a program having an antidependence . . .

. . . is run on a processor having an uncorrected WAR hazard.

09-35 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-35

09-36 09-36

Output Dependence:

A dependence between two instructions . . .

. . . indicating that both instructions write the same location . . .

. . . (register or memory address).

Output Dependence Example

add r1, r2, r3
sub r1, r4, r5

The sub is output dependent on add.

Execution may be incorrect if . . .

. . . a program having an output dependence . . .

. . . is run on a processor having an uncorrected WAW hazard.

09-36 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-36

09-37 09-37

Control Dependence:

A dependence between a branch instruction and a second instruction . . .

. . . indicating that whether the second instruction executes . . .

. . . depends on the outcome of the branch.

beqz r1, SKIP
add r2, r3, r4
sub r5, r6, r7

The add is control dependent on the beqz.

The sub is not control dependent on the beqz.

09-37 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-37

09-38 09-38Scheduling

Motivation

Stalls are bad.

Some stalls can be avoided by rearranging instructions.

Others can be avoided by restructuring code.

Avoiding stalls this way is free if done by compiler or programmer.

Scheduling:

Organizing instructions to improve execution efficiency.

Static Scheduling:

Organizing of instructions by compiler or programmer to improve execution efficiency.

09-38 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-38

09-39 09-39Scheduling Examples

Unscheduled Code

addf f0, f1, f2
subf f3, f0, f4
multf f5, f6, f7
ld f8, 0(r1)
addi r1, r1, #8
subi r2, r2, #1

09-39 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-39

09-40 09-40Unscheduled Code on Chapter-3 DLX

Note: Shared integer and FP WB.

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11
addf f0, f1, f2 IF ID A0 A1 A2 A3 WB
subf f3, f0, f4 IF ID ---------> A0 A1 A2 A3 WB
multf f5, f6, f7 IF ---------> ID M0 M1 M2 M3 M4 M5 M6 WB
ld f8, 0(r1) IF ID -> EX MEM WB
addi r1, r1, #8 IF -> ID EX MEM WB
subi r2, r2, #1 IF ID EX MEM WB

Execution has four stall cycles.

Schedule code by moving integer instructions between addf and subf.

09-40 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-40

09-41 09-41Scheduled Code on Chapter-3 DLX

Instructions reordered by compiler or programmer to remove stalls.

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11
addf f0, f1, f2 IF ID A0 A1 A2 A3 WB
ld f8, 0(r1) IF ID EX MEM WB
multf f5, f6, f4 IF ID M0 M1 M2 M3 M4 M5 M6 WB
addi r1, r1, #8 IF ID EX MEM WB
subf f3, f0, f4 IF ID A0 A1 A2 A3 WB
subi r2, r2, #1 IF ID EX MEM WB

Execution has zero stall cycles.

09-41 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-41

09-42 09-42Loop Unrolling

Loop Unrolling:

A code restructuring technique for loops in which . . .

. . . the computations performed by several iterations of the original loop . . .

. . . are performed by one iteration of the unrolled loop.

The unrolled loop performs the same amount of work . . .

. . . but uses fewer instructions and induces fewer stalls.

Loop is said to be unrolled twice . . .

. . . if two iterations of original loop performed by one of unrolled loop.

Loop is said to be unrolled n times . . .

. . . if n iterations of original loop performed by one of unrolled loop.

A loop unrolled once is the same as the original loop.

09-42 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-42

09-43 09-43Loop Unrolling Example

Suppose loop below runs for 24 iterations.

Execution on DLX:

! Cycle 0 1 2 3 4 5 6 7 8
LOOP:
lw r1, 0(r2) IF ID EX MEM WB IF ID
add r3, r3, r1 IF ID --> EX MEM WB IF
addi r2, r2, #4 IF --> ID EX MEM WB
sub r5, r4, r2 IF ID EX MEM WB
bneq r5, LOOP IF ID EX MEM WB
and IFx

Execution on DLX. 7
5 = 1.5 CPI . . .

. . . execution time 24 × 7 = 168 cycles.

09-43 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-43

09-44 09-44

Unrolled twice:

! Cycle 0 1 2 3 4 5 6 7 8 9 10
LOOP:
lw r1, 0(r2) IF ID EX MEM WB IF ID EX
lw r10, 4(r2) IF ID EX MEM WB IF ID
addi r2, r2, #8 IF ID EX MEM WB IF
add r3, r3, r1 IF ID EX MEM WB
add r3, r3, r10 IF ID EX MEM WB
sub r5, r4, r2 IF ID EX MEM WB
bneq r5, LOOP IF ID EX MEM WB
and IFx

Instruction execution time: 8
7 = 1.14 CPI. . .

. . . execution time 12 × 8 = 96 cycles.

Double benefit: . . .

. . . faster execution per instruction and . . .

. . . fewer instructions.

09-44 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-44

09-45 09-45

Scheduled:

! Cycle 0 1 2 3 4 5 6 7
LOOP:
lw r1, 0(r2) IF ID EX MEM WB IF
addi r2, r2, #4 IF ID EX MEM WB
add r3, r3, r1 IF ID EX MEM WB
sub r5, r4, r2 IF ID EX MEM WB
bneq r5, LOOP IF ID EX MEM WB
and IFx

Scheduled: 6
5 = 1.2 CPI . . .

. . . execution time 24 × 6 = 144 cycles.

Not as good as unrolled loop, 96 cycles.

09-45 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-45

09-46 09-46How Unrolling Improves Performance

Suppose original loop had 24 iterations and unrolled twice.

Unrolled loop runs for 12 iterations.

Twelve, instead of 24 end-of-loop branches . . .

. . . eliminates 12 branch condition test instructions, 12 branch instructions, . . .

. . . and 12 bubbles inserted after branch.

If indexed addressing allowed (e.g., lw r10, 4(r2)) . . .

. . . eliminates 12 address increment instructions.

With more instructions per iterations, its easier to eliminate RAW hazard stalls by schedul-
ing.

09-46 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-46

09-47 09-47Instruction-Level Parallelism

Instruction-Level Parallelism:

The average number of instructions in a machine-language program . . .

. . . that can be simultaneously started [per cycle] . . .

. . . when execution is only limited by true dependencies.

Note: Text definition is less specific.

Number of instructions started per cycle, IPC, is 1
CPI .

Provides a bound on performance of an implementation of an ISA.

09-47 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-47

09-48 09-48

ILP for SPEC92 programs in MIPS:

0 20 40 60 80 100 120

Instruction issues per cycle

gcc

espresso

li
SPEC
benchmarks

fpppp

doduc

tomcatv

54.8

62.6

17.9

75.2

118.7

150.1

140 160

FIGURE 4.38 ILP available in a perfect processor for six of the SPEC benchmarks.

Based on graph it’s possible to attain a CPI of 1
54.8 for gcc . . .

. . . which is much better than 1 for Chapter-3 DLX.

These IPC’s are much higher than believed attainable.

09-48 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-48

09-49 09-49ILP Example

Example 1: No control-transfer instructions, no name dependencies.

lw r1, 0(r2)
sub r4, r1, r5
and r6, r1, r7
xor r8, r4, r6
slt r9, r8, r10
or r11, r8, r12
addi r13, r8, #1

09-49 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-49

09-50 09-50

Execution on DLX:

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11
lw r1, 0(r2) IF ID EX MEM WB
sub r4, r1, r5 IF ID --> EX MEM WB
and r6, r1, r7 IF --> ID EX MEM WB
xor r8, r4, r6 IF ID EX MEM WB
slt r9, r8, r10 IF ID EX MEM WB
or r11, r8, r12 IF ID EX MEM WB
addi r13, r8, #1 IF ID EX MEM WB

On DLX, execution speed 7
8 = 0.875 inst/cycle.

09-50 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-50

09-51 09-51

Execution on ideal machine used for determining ILP:

To find ILP use 0-cycle latencies and true dependencies:

!Cycle: 0 1 2 3 4 5 6 7 8 9 10 11
lw r1, 0(r2) St
sub r4, r1, r5 St
and r6, r1, r7 St
xor r8, r4, r6 St
slt r9, r8, r10 St
or r11, r8, r12 St
addi r13, r8, #1 St

ILP is 7
4 = 2.75 inst/cycle, much better.

Note: No stall after load.

Simultaneous execution of instructions at cycle 1 and 3.

09-51 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-51

09-52 09-52

Example 1a: No control-transfer instructions, name dependencies.

lw r1, 0(r2)
add r2, r1, r3 ! Data dependence between lw and add
xor r1, r4, r5 ! Anti dependence between add and xor.
add r6, r1, r6 ! Data dependence between xor and add.

Execution on the Chapter-3 DLX implementation.

!Cycle: 0 1 2 3 4 5 6 7 8 9 10 11
lw r1, 0(r2) IF ID EX MEM WB
add r2, r1, r3 IF ID --> EX MEM WB
xor r1, r4, r5 IF --> ID EX MEM WB
add r6, r1, r6 IF ID EX MEM WB

ILP Analysis.

!Cycle: 0 1
lw r1, 0(r2) St
add r2, r1, r3 St ! Wait due to data dependency.
xor r1, r4, r5 St ! No need to wait for name dependency.
add r6, r1, r6 St

09-52 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-52

09-53 09-53Example 2: No control-transfer instructions, load/stores.

On Chapter-3 DLX:

!Cycle: 0 1 2 3 4 5 6 7 8 9
add r1, r2, r3 IF ID EX MEM WB
sw 0(r10), r1 IF ID EX MEM WB
lw r4, 0(r11) ! r10 = r11 IF ID EX MEM WB
lw r5, 0(r12) ! r10 != r12 IF ID EX MEM WB
sub r6, r4, r7 IF ID EX MEM WB
add r8, r5, r9 IF ID EX MEM WB

ILP Analysis:

!Cycle: 0 1 2 3
add r1, r2, r3 St
sw 0(r10), r1 St
lw r4, 0(r11) ! r10 = r11 St
lw r5, 0(r12) ! r10 != r12 St
sub r6, r4, r7 St
add r8, r5, r9 St

ILP is 6
4 = 1.5.

To achieve this hardware must determine effective-address relationships.

09-53 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-53

09-54 09-54ILP and Basic Blocks

Basic Block:

Consecutive instructions that are always executed consecutively.

Equivalently: consecutive instructions in which . . .

. . . only the first may be a branch target . . .

. . . and only the last be a control transfer.

All members of a basic block get executed the same number of times.

L1:
add r1, r2, r3 ! Basic block 1.
L0:
sub r2, r3, r4 ! Basic block 2.
and r5, r6, r7 ! Basic block 2.
bneq r5, TARGET ! Basic block 2.
xor r6, r7, r8 ! Basic block 3.
TARGET:
or r9, r10, r11 ! Basic block 4.
L2:

Code contains four basic blocks.

09-54 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-54

09-55 09-55ILP and Basic Blocks

Much ILP comes from ignoring control dependencies . . .

. . . that is, simultaneously executing instructions in different basic blocks.

Example 3: Control Transfers

On Chapter-3 DLX:

! Cycle 0 1 2 3 4 5 6 7 8 9 10
add r1, r2, r3 IF ID EX MEM WB
bneq r4, SKIP IF ID EX MEM WB
add r5, r6, r7 IFx
SKIP:
or r8, r9, r10 IF ID EX MEM WB
bneq r8 SKIP2 IF ID EX MEM WB
addi r1, r1, #5 IFx
SKIP2:
xor r11, r11, r12 IF ID EX MEM WB

09-55 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-55

09-56 09-56

ILP Analysis:

! Cycle 0 1
add r1, r2, r3 St
bneq r4, SKIP St
add r5, r6, r7
SKIP:
or r8, r9, r10 St
bneq r8 SKIP2 St
addi r1, r1, #5
SKIP2:
xor r11, r11, r12 St

ILP: 5
2 .

Instruction overlap determined by operands only, not branches.

09-56 EE 4720 Lecture Transparency. Formatted 10:36, 24 October 2001 from lsli09. 09-56

