
06-1 06-1DLX Implementation

Material from chapter 3 of H&P.

Outline: (In this set.)

Unpipelined DLX Implementation. (Diagram only.)

Pipelined Implementation: Hardware, notation, hazards.

Data Hazards: Definitions, stalling, bypassing.

Control Hazards: Squashing, one-cycle implementation.

Outline: (Covered in class but not yet in set.)

Operation of nonpipelined implementation, elegance and power of pipelined implementation.
(See text.)

Computation of CPI for program executing a loop.

06-1 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-1

06-2 06-2Unpipelined Implementation

Instruction fetch
Instruction decode/

register fetch

Execute/
address

calculation

Memory
access

Write
back

B

PC

4

ALU

16 32

Add

Data
memory

Registers

Sign
extend

Instruction
memory

M
u
x

M
u
x

M
u
x

M
u
x

Zero?
Branch

taken
Cond

NPC

lmm

ALU
output

IR
A

LMD

FIGURE 3.1 The implementation of the DLX datapath allows every instruction to be executed in four or five clock
cycles.

06-2 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-2

06-3 06-3Pipelined Implementation

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

06-3 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-3

06-4 06-4Pipeline Details

Pipeline Segments

Divide pipeline into segments.

Each segment occupied by at most one instruction.

At any time, different segments can be occupied by different instructions.

Segments given names: IF, ID, EX, MEM, WB

Pipeline Registers

Registers separating pipeline segments.

Written at end of each cycle.

To emphasize role, drawn as part of dividing bars.

Registers named using pair of segment names and register name.

For example, IF/ID.IR, ID/EX.IR, ID/EX.A.

06-4 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-4

06-5 06-5Pipeline Execution Diagram

Pipeline Execution Diagram

Diagram showing the pipeline segments that instructions occupy as they execute.

Time on horizontal axis, instructions on vertical axis.

Diagram shows where instruction is at a particular time.

Cycle 0 1 2 3 4 5 6
add r1, r2, r3 IF ID EX MEM WB
and r4, r5, r6 IF ID EX MEM WB
lw r7, 8(r9) IF ID EX MEM WB

A vertical slice (e.g., at cycle 3) shows processor activity at that time.

In such a slice a segment should appear at most once . . .

. . . if it appears more than once execution not correct . . .

. . . since a segment can only execute one instruction at a time.

06-5 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-5

06-6 06-6Instruction Decoding and Pipeline Control

Pipeline Control

Setting control inputs to devices including . . .

. . . multiplexor inputs . . .

. . . function for ALU . . .

. . . operation for memory . . .

. . . whether to clock each register . . .

. . . et cetera.

06-6 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-6

06-7 06-7

Options for controlling pipeline:

• Magic Cloud

• Decode in ID
Determine settings in ID, pass settings along in pipeline latches.

• Decode in Each Stage
Pass opcode portions of instruction along.

Decoding performed as needed.

Real systems decode in ID.

For clarity, diagrams misleadingly imply decoding in stage needed . . .

. . . by passing entire instruction along.

06-7 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-7

06-8 06-8Pipeline Hazards

Hazard:

A potential execution problem due overlapping instruction execution.

Interlock:

Hardware that avoids hazards by stalling certain instructions.

Hazard Types:

Structural Hazard:

Needed resource currently busy.

Data Hazard:

Needed value (written by previous instruction) not yet available.

Control Hazard:

Needed instruction not yet available or wrong instruction executing.

06-8 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-8

06-9 06-9Data Hazards

Identified by acronym indicating correct operation.

• RAW: Read after write.

• WAR: Write after read.

• WAW: Write after write.

DLX implementation above only subject to RAW hazards.

RAR not a hazard since read order irrelevant (without an intervening write).

06-9 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-9

06-10 06-10Interlocks

When threatened by a hazard:

• Stall (Pause a part of the pipeline.)
Stalling avoids overlap that would cause error.

This does slow things down.

• Add hardware to avoid the hazards.
Details of hardware depend on hazard and pipeline.

Several will be covered.

06-10 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-10

06-11 06-11Structural Hazards

Cause: two instructions simultaneously need one resource.

Solutions:

Stall.

Duplicate resource.

Covered in more detail with floating-point instructions.

06-11 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-11

06-12 06-12Data Hazards

Chapter-3 DLX Subject to RAW Hazards.

Consider the following incorrect execution:

! Cycle 0 1 2 3 4 5 6 7
add r1, r2, r3 IF ID EX MEM WB
sub r4, r1, r5 IF ID EX MEM WB
and r6, r1, r8 IF ID EX MEM WB
xor r9, r4, r11 IF ID EX MEM WB

Execution incorrect because . . .

. . . sub reads r1 before add computed its value, . . .

. . . and reads r1 before add stored its value, and . . .

. . . xor reads r4 before sub stored its value.

Problem fixed by stalling the pipeline.

06-12 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-12

06-13 06-13

Stall:

To pause execution in a pipeline from IF up to a certain stage.

With stalls, code can execute correctly:

For code on previous slide, stall until data in register.

! Cycle 0 1 2 3 4 5 6 7 8 9 10
add r1, r2, r3 IF ID EX MEM WB
sub r4, r1, r5 IF ID -----> EX MEM WB
and r6, r1, r8 IF -----> ID EX MEM WB
xor r9, r4, r11 IF ID -> EX MEM WB

Arrow shows that instructions stalled.

Stall creates a bubble, segments without valid instructions, in the pipeline.

With bubbles present, CPI is greater than its ideal value of 1.

06-13 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-13

06-14 06-14

Stall Implementation

Stall implemented by asserting a hold signal . . .

. . . which inserts a nop after the stalling instruction and . . .

. . . disables clocking of pipeline latches before the stalling instruction.

! Cycle 0 1 2 3 4 5 6 7 8 9 10
add r1, r2, r3 IF ID EX MEM WB
sub r4, r1, r5 IF ID -----> EX MEM WB
and r6, r1, r8 IF -----> ID EX MEM WB
xor r9, r4, r11 IF ID -> EX MEM WB

During cycle 3, a nop is in EX.

During cycle 4, a nop is in EX and MEM.

The two adjacent nops are called a bubble . . .

. . . they move through the pipeline with the other instructions.

A third nop is in EX in cycle 7.

06-14 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-14

06-15 06-15Bypassing

Some stalls are avoidable.

Consider again:

! Cycle 0 1 2 3 4 5 6 7 8 9 10
add r1, r2, r3 IF ID EX MEM WB
sub r4, r1, r5 IF ID EX MEM WB
and r6, r1, r8 IF ID EX MEM WB
xor r9, r4, r11 IF ID EX MEM WB

Note that the new value of r1 needed by sub . . .

. . . has been computed at the end of cycle 2 . . .

. . . and isn’t really needed until the beginning of the next cycle, 3.

Execution was incorrect because the value had to go around the pipeline to ID.

Why not provide a shortcut?

Why not call a shortcut a bypass or forwarding path?

06-15 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-15

06-16 06-16DLX Implementation With Some Forwarding Paths:

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

! Cycle 0 1 2 3 4 5 6 7 8 9 10
add r1, r2, r3 IF ID EX MEM WB
sub r4, r1, r5 IF ID EX MEM WB
and r6, r1, r8 IF ID EX MEM WB
xor r9, r4, r11 IF ID EX MEM WB

It works!

06-16 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-16

06-17 06-17DLX Implementation With Some Forwarding Paths:

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Not all stalls are avoidable.

! Cycle 0 1 2 3 4 5 6 7 8 9 10
lw r1, 0(r2) IF ID EX MEM WB
add r1, r1, r4 IF ID -> EX MEM WB
sw 4(r2), r1 IF -> ID -----> EX MEM WB
addi r2, r2, #8 IF -----> ID EX MEM WB

Stall due to lw could not be avoided (data not available in cycle 3).

Stall in cycles 5 and 6 could be avoided with a new forwarding path.

06-17 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-17

06-18 06-18Bypass Control Logic for Lower ALU Mux

Start with logic for rd, show path of Mux logic.

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

RD RD

Mux
1

RD
Decode

RD

?

06-18 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-18

06-19 06-19Logic to determine rd for register file.

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

= Type R

11..15

16..20

31

0

= Link CTI

= Type I
ALU

RD RD

= Non-link
CTI

= Load

=Store

RD

00

01

10

11
00

01

10

11

MSB

LSB

(Not Connected)

06-19 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-19

06-20 06-20Bypass Control Logic for Lower ALU Mux

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

= Type R

=’
11..15

16..20

31

0

= Link CTI

= Type I
ALU

RD RD

=’
11..15

B

MEM

WB

IMM

LSB

MSB

2

Mux

= Non-link
CTI

= Load

=Store

RD

00

01

10

11
00

01

10

11

MSB

LSB

(Not Connected)

06-20 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-20

06-21 06-21Bypass Control Logic

Control logic not minimized (for clarity).

Control Logic Generating ID/EX.RD.

Present in previous implementations, just not shown.

Determines which register gets written based on instruction.

Instruction categories used in boxes such as = Load (some instructions omitted):

= Non-link CTI : branches and jumps except linking jumps (jal and jalr).

= Store : All store instructions.

= Type I ALU : All Type I ALU instructions.

= Load : All load instructions.

= Type R : All Type R instructions.

= Link CTI : jal and jalr.

06-21 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-21

06-22 06-22Bypass Control Logic, Continued

Logic Generating ID/EX.MUX.

=′ box determines if two register numbers are equal.

Register number zero is not equal register zero, nor any other register.

(The bypassed zero value might not be zero.)

06-22 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-22

06-23 06-23Control Hazards

Cause: on taken CTI several wrong instructions fetched.

Consider:

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

06-23 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-23

06-24 06-24

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

Example of incorrect execution

!I Adr Cycle 0 1 2 3 4 5 6 7 8
0x100 beqz r4, TARGET IF ID EX MEM WB
0x104 sw 0(r2), r1 IF ID EX MEM WB
0x108 sub r4, r2, r5 IF ID EX MEM WB
0x10c and r6, r1, r8 IF ID EX MEM WB
0x110 or r12, r13, r14
...
TARGET: ! TARGET = 0x200
0x200 xor r9, r4, r11 IF ID EX MEM WB

Branch is taken yet following three instructions complete execution.

Branch target finally fetched in cycle 4.

Problem: What do we do about three instructions following branch?

06-24 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-24

06-25 06-25

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC ZHandling Instructions Following a Taken Branch

Option 1: Don’t fetch them.

Impossible (with pipelining) because . . .

. . . fetch starts (sw in cycle 1) before branch even decoded.

!I Adr Cycle 0 1 2 3 4 5 6 7 8
0x100 beqz r4, TARGET IF ID EX MEM WB
0x104 sw 0(r2), r1 IF ID EX MEM WB
0x108 sub r4, r2, r5 IF ID EX MEM WB
0x10c and r6, r1, r8 IF ID EX MEM WB
0x110 or r12, r13, r14
...
TARGET: ! TARGET = 0x200
0x200 xor r9, r4, r11 IF ID EX MEM WB

06-25 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-25

06-26 06-26

Handling Instructions Following a Taken Branch

Option 2: Fetch them, but squash (stop) them in a later stage.

This will work if instructions squashed . . .

. . . before modifying architecturally visible storage (registers and memory).

Memory modified in MEM stage and registers modified in WB stage . . .

. . . so instructions must be stopped before beginning of MEM stage.

Can we do it? That depends where the branch instruction is.

In example, we need to squash sw by end of cycle 2.

During cycle 2 beqz in EX . . .

. . . it has been decoded and the branch condition is available . . .

. . . so we know whether the branch is taken.

If the branch is taken, the sw and following instructions can be squashed in time.

Option 2 will be used.

06-26 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-26

06-27 06-27Instruction Squashing

In-Flight Instruction::

An instruction in the execution pipeline.

Later in the semester a more specific definition will be used.

Squashing:: [an instruction]
preventing an in-flight instruction . . .

. . . from writing registers, memory or any other visible storage.

Squashing also called: nulling, abandoning, and cancelling..

Like an insect, a squashed instruction is still there (in most cases) but can do no harm.

06-27 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-27

06-28 06-28Squashing Instruction in Example DLX Implementation

Two ways to squash.

• Prevent it from writing architecturally visible storage.

Replace destination register control bits with zero. (Writing zero doesn’t change anything.)

Set memory control bits (not shown so far) for no operation.

• Change Operation to nop.

Would require changing many control bits.

Squashing shown that way here for brevity.

Illustrated by placing a nop in IR.

Why not replace squashed instructions with target instructions?

Because there is no straightforward and inexpensive way . . .

. . . to get the instructions where and when they are needed.

(Curvysideways and expensive techniques covered in Chapter 4.)

06-28 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-28

06-29 06-29

DLX implementation used so far.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

06-29 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-29

06-30 06-30

Example of correct execution

!I Adr Cycle 0 1 2 3 4 5 6 7 8
0x100 beqz r4, TARGET IF ID EX MEM WB
0x104 sw 0(r2), r1 IF ID EXx
0x108 sub r4, r2, r5 IF IDx
0x10c and r6, r1, r8 IFX
0x110 or r12, r13, r14
...
TARGET: ! TARGET = 0x200
0x200 xor r9, r4, r11 IF ID EX MEM WB

Branch outcome known at end of cycle 2 . . .

. . . wait for cycle 3 when all doomed instructions (sw, sub, and) in flight . . .

. . . and squash them so in cycle 4 they act like nops.

Three cycles (1, 2, and 3), are lost.

Three cycles called a branch penalty.

Three cycles is alot of cycles, is there something we can do?

06-30 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-30

06-31 06-31Yes: One-Cycle Branch Delay Implementation

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Compute branch target address in ID stage.

06-31 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-31

06-32 06-32One-Cycle Branch Delay Implementation

Compute branch target and condition in ID stage.

Workable because register values not needed to compute branch address and . . .

. . . branch condition is a simple zero test.

Now how fast will code run?

!I Adr Cycle 0 1 2 3 4 5 6 7 8
0x100 beqz r4, TARGET IF ID EX MEM WB
0x104 sw 0(r2), r1 IFx
0x108 sub r4, r2, r5
0x10c and r6, r1, r8
0x110 or r12, r13, r14
...
TARGET: ! TARGET = 0x200
0x200 xor r9, r4, r11 IF ID EX MEM WB

Penalty is only one cycle.

Later in semester penalty reduced to zero and even -1 [sic].

06-32 EE 4720 Lecture Transparency. Formatted 12:26, 28 September 2001 from lsli06. 06-32

