EE 4720 Homework 3 Due: 14 November 2001

Problem 1: The code below executes on a dynamically scheduled four-way superscalar DLX
implementation that uses reorder buffer entry numbers to name destination registers.

e Loads and stores use the load/store unit, which consists of segments L1 and L2.
e The floating-point multiply unit is fully pipelined and consists of six segments.

e The usual number of instructions (for a 4-way superscalar machine) can be fetched, decoded,
and committed per cycle.

e An unlimited number of instructions can complete per cycle. (This makes the solution
easier.)

e There are an unlimited number of reservation stations and reorder buffer entries.

e The target of a branch is fetched in the cycle after the branch is in ID, whether or not the
branch condition is available. (We’'ll cover that later.)

(a) Show a pipeline execution diagram for the code below until the beginning of the fourth iteration.
Show where instructions commit.

(b) What is the CPI for a large number of iterations? Hint: There should be less than siz cycles
per iteration.

(c) Show the entries in the register map for registers £0 and r1 for each cycle. (Make up reorder
buffer entry numbers.)

LOOP: ! LOOP = 0x1000
1d £f0, 0o(rl)

muld fO, fO, £f2

sw 0(rl1), fO

addi r1, rl, #8

sub r2, r1, r3

bnez r2, LOOP

(d) The first two instructions of the code below are different than the code above, the other instruc-
tions are identical. It runs on a system identical to the one above except that there are only 1000
reorder buffer entries. (That’s actually a lot, but it’s not unlimited.) What is the CPI for a large
number of iterations? Is the CPI really lower in the period before reorder buffers are used up? If
you can, solve the problem without drawing a complete pipeline execution diagram.

LOOP: ! LOOP = 0x1000
1d f4, 0(r1)

muld fO0, fO0, f4

sw 0(r1), fO

addi r1, r1, #8

sub r2, r1, r3

bnez r2, LOOP

Problem 2: When the MIPS program below starts register $t0 holds the address of a string, the
program converts the string to upper case.

branches and jumps are delayed (1 cycle). Some branch instructions compare two registers. Register
$0 works like DLX r0.)

LOQOP:
1bu $t1, 0($t0)
addi $t0, $t0, 1
beq $t1, $0, DONE
slti $t2, $t1, 97 # < ’a’
bne $t2, $0 LOOP
slti $t2, $t1, 123 # ’z’ + 1
beq $t2, $0, LOOP
addi $t1, $t1, -32
j LOOP
sb $t1,-1($t0)
DONE:
Convert the program to TA-64 assembly language using predicated instructions. (You're not
expected to know it at this point.) IA-64 is described in the IA-64 Application Developer’s Archi-

For this problem one can ignore alot of IA-64’s features. Here is what you will need to know:
IA-64 has 64 1-bit predicate registers, p0 to p63, which are written by cmp (compare) and other
instructions. Predicates can be specified for most instructions, including cmp itself. See 11.2.2 for
a description of how to use [A-64 predicates.

To solve the problem look at the following sections: 9.3, 9.3.1, and 9.3.2 (a brief description
of where to place stops); 11.2.2 (predicate description and some more information on stops); and
Chapter 7 (for instruction descriptions). The following instructions will be needed: cmp (compare,
look at the normal [none| and and comparison types), br (branch), load, store, and add.

e Use general-purpose registers r0-r31 and predicate registers pl-p63 in your solution. (There
are 128 general-purpose registers, but those above r31 must be allocated.)

e Minimize the number of instructions per iteration assuming about half the characters are
lower case.

e Use predicates to eliminate some branches.
e Make use of post-increment loads or stores.
e Pay attention to data type sizes.

e Show stops but do not show bundle boundaries.

http://www.ece.lsu.edu/ee4720/mips32v1.pdf
http://www.ece.lsu.edu/ee4720/mips32v2.pdf
http://www.ece.lsu.edu/ee4720/ia-64.pdf

