EE 4720 Homework 2 soution Due: 5 November 2001

Problem 1: Answer the following questions about the MIPS Technologies 4Km processor core.
The processor is documented in

(a) For each stage in the statically scheduled DLX implementation show where the same work is
done in the 4Km pipeline. Note that work done in one DLX stage might be performed in more
than one 4Km pipeline stage.

1F 1

IDE

EX: Part of the ALY OpQTM'\OT\ done in E, pm in M. Address calculations for load and stores done in E.

MEM: Memory load and store done in M stage. Alignment done in A stage.

WB: W.

(b) The 4Km documentation uses the term stall differently than used in class. How do their usages
differ? What term does the documentation use that is close to stall as used in class? (See section
2.8.1)

By stall the 4Km documentation means take more than one QyQ\Q 10 eomp\ete a computation, as do the fioating-point
units in DLX. Unlike the use in ¢lass, it does not mean that instructions TO\\O\N\H% (mor@ YQQQ\'\Uy fetehed U\M\) the stalled
instruction are StOprG. The documentation uses the term slip for what is meant D\/ stall in class.

(¢) A MIPS implementation needs to do all of the following:

(1) arithmetic and logical operations for ordinary instructions
(2) compute the target of a branch
(3) compute the effective address of a load or store

In the first pipelined DLX implementation all of these were performed by the ALU. MIPS has
a branch instruction in which a branch is taken if two registers are equal (beq) or not equal (bne).
So it must also

(4) determine if two values are equal

How many of these are shared? If they are not shared, why not? (The documentation does
not state exactly what hardware is present, answer the question by looking at how instructions
execute.)

The ALU, effective address computation, and part of a branch target computation (I-AC2) may be shared. All of
these are done in the second half of E (’Eh@ ALU 18 also used in the first half of M). An instruction needs to do at most
one of these thmgs. (Q.g., load or store instructions, which Qomput@. affective addresses, do not need to QOW\PUIQ pranch
targets or need to use the ALU for other arithmetie or logical operations.) Therefore these [(1), (2), and (3)] can be
shared.

Aeeord‘mg 10 2.1.2 an instruction address is determined in E, and so the condition must be evaluated in E. RQg\SIQY
values are not availaple until the second half of E 50 the YQg\SIQY QOmPQHSOﬂ 1o determine the branch condition must also
De evaluated in the second half of E, the same time as branch target address QOmpUUlUOﬂ (assum'mg that's what 1-AC2
GOQS). Therefore SQpMMQ hardware is needed for the branch condition.

http://www.mips.com/declassified/Declassified_2000/MD00016-2B-4K-SUM-01.15.pdf

Problem 2: The program below runs on the DLX implementation shown below. The hardware
makes no special provisions for the tricky technique used. The coding for a nop (actually add r0,
r0, r0) is all zeros.

Why isn’t this an infinite loop? (For those who know why it matters, assume there is no
cache.)

The sw instruction YQp\‘AQQS the j instruction with & nop.

Why will the code run for at least two iterations?

Bacause in the Tirst iteration the sw instruction reaches MEM arfter the j is Q\YQQGy fetenhed. 1T o write 1o the
MEM-stage memory port is seen by the IF-stage memory port then the loop will perform only two iterations.

IF JID EX MEM WB
- ALU
6:10 Addr Data[§ A b Mem
+4 11:15 Addr Datal{ B ALU Add
H a r
Addr -
DIn S 5 [|In Out —IMD
C H}j
s\ f .
=/ I
Addr —] Bx
Mem Decode RD RD RD
Port Rd
Datal4 IR IR IR IR
LOOP:
lw r1, 0(r2)
addi r2, r2, #4
add r3, r3, ril
sw 0x100(r0), r0
LINE: LINE = 0x100

j LOOP

Problem 3: Show a pipeline execution diagram for the code below running on a 4-way statically
scheduled superscalar processor. All needed bypass paths are available, including one for the branch
condition. Determine the CPI for a large number of iterations.

and r2, r2, r8
LOOP: ! LOOP = 0x1008

1w r1, 0(r2)

add r3, r3, ril

addi r2, r2, #4

sub r4, r2, rb5

bneq r4, LOOP

Bagsed on the PED below the CP1is % =1.4. The p\p@ﬂﬂ@ axecution d'\agmm is for the second (OF \MQF) itaration.

and r2, r2, r8

LOOP: ! LOOP = 0x1008
! Cycle 0 1 2 3 4 5 6 7
lw r1, 0(r2) IF ID EX ME WB IF
add r3, r3, ril IF ID ----> EX ME WB IF
addi r2, r2, #4 IF ----> ID EX ME WB
sub r4, r2, rb5 IF ----> ID -> EX ME
bneq r4, LOOP IF ----> ID ----> EX

Problem 4: The code from the problem above can be improved (stalls can be removed) to a small
extent by scheduling, but that would still leave some stalls. This might see like a good candidate
for loop unrolling.

(a) Show why it would take alot of unrolling to eliminate all stalls. (You don’t have to show the
unrolled code, since it would be long.)

Because of the 1-QyQ\Q 10ad \Qt@ﬂ@y the consuming add instruction would have to be p\QQQG seven instructions away.
Two of those can be an addi and sub, the rest would be 1w, S0 the \OOP would be unrolled six times. This is shown
Delow. The code has been S\'\ghﬂy re-structured To facilitate umo\\'mg pOS'\UOT\S of the sub and addi have been switehed,
with & compensating instruction added before the \OOP. To avoid added GQPQ\'\GQT\Q'\QS SIX running sums are eomput@d, at
the end of the \OOP These are added IOgQU\QY.

and r2, r2, r8

subi r5, r5, #24 ! Compensate for switching position of sub and addi below.
nop
LOOP: ! LOOP = 0x1010

lw r1, 0(r2) IF ID EX ME WB
lw r11, 4(r2) IF ID EX ME WB
lw r12, 8(r2) IF ID EX ME WB
lw r13, 12(r2) IF ID EX ME WB

1w ri14, 16(r2) IF ID EX ME WB

1w r15, 20(r2) IF ID EX ME WB

sub r4, r2, rb IF ID EX ME WB

addi r2, r2, #24 IF ID EX ME WB

add r3, r3, ri IF ID EX ME WB
add r21, r21, ri1 IF ID EX ME WB
add r22, r22, ri2 IF ID EX ME WB
add r23, r23, ri3 IF ID EX ME WB
add r24, r24, ri4 IF ID EX ME WB
add r25, r25, rib IF ID EX ME WB

bneq r4, LOOP IF ID EX ME WB

! Note: Could add differently to avoid stalls.

add r3, r3, r21 IF IDx
add r3, r3, r22 IFx
add r3, r3, r23 IFx
add r3, r3, r24 IFx
add r3, r3, r25 IFx

(b) Use software pipelining and scheduling to remove the stalls. (Hint: to software pipeline switch
the 1w and add instructions, and make any other necessary changes.) What is the CPI for a large
number of iterations of the modified code?

The loop below runs with CPlof 2 = 0.6. The add and 1w were switched and prolog and epilog code, instructions
bafore and after the \OOP 1o Q()meﬂSQIQ, was added. Software p'\pe\m‘mg Was also used for the braneh condition: the sub
and addi were reversed.

and r2, r2, r8

add r1, r0, rO
subi r5, r5, #4

LOOP: ! LOOP = 0x1010
! Cycle 0 1 2 3 4
add r3, r3, ri IF ID EX ME WB
IF ID
lw r1, 0(r2) IF ID EX ME WB
IF ID
sub r4, r2, rb5 IF ID EX ME WB
IF ID
addi r2, r2, #4 1IF ID EX ME WB
IF ID
bneq r4, LOOP IF ID EX ME
add r3, r3, ri IF IDx

(¢) Would loop unrolling provide further gains?

It always does. As always, unrolling would reduce the proportion of l0op index instructions (those computing the
address of the 10ad and the braneh QOT\G‘UOT\). Unro\\'mg m-\ght p\QQQ the branch in the 1ast pOS-\UOT\ ina group, deUng
Teteh waste. Because there are fewer iterations, 1t will reduce the number of instructions SQUQSth due To the taken braneh.

