Call Number 1585 (Spring 2001)

URL: http://www.ee.lsu.edu/ee4720

Offered by:

 David M. Koppelman
 349 EE Building
 578-5482, koppel@ee.lsu.edu, http://www.ee.lsu.edu/koppel/koppel.html

Tentative office hours: Monday, Wednesday 9:40-11:10, Thursday 14:30-16:30.

Should already know:

 How to design a computer.

Will learn:

 How to design a good computer.
Prerequisites By Course:

EE 3755, Computer Organization.

Prerequisites By Topic:

- Logic design.
- Computer organization.
- Assembly-language programming.

Text

Course Content

- Instruction set (ISA) design.
- Pipelined processor design.
- Multiple-issue processor design.
- Caches and memory.

Course content will closely follow text.

Lecture material not in book will be marked: (NIB).
Midterm Exam, 40%

Fifty minutes, closed book.

Final Exam, 40%

Two hours, closed book.

Yes, it’s cumulative.

Homework, 20%

Written and computer assignments.

Lowest grade or unsubmitted assignment dropped.
Course Usefulness

Material in Course Needed For:

- General-purpose processor designers and testers.
- Special-purpose processor designers and testers.
- Compiler writers.
- Programmers of high-performance systems.
- Answering job interview questions.
Material Covered in This Set

Coverage: Sections 1.2 and 1.3.

Slides and other material via http://www.ee.lsu.edu/ee4720

Web site also has homework assignments, exams, grades, and other material.
ISA and Implementation Distinction

What is a computer?

A machine that executes instructions which read and write memory.

What a computer engineer does:

- Develops an instruction set architecture (ISA):

 \[
 \text{ld } r1, 0(r2) \quad ! \text{Load register } r1 \text{ with contents of mem at } r2. \\
 \text{add } r3, r1, r4 \\
 \text{sw } 0(r2), r3
 \]

- Designs hardware to execute, implement, the instruction set:
Definitions

Instruction Set Architecture (ISA):
Precise definition of computer’s instructions and their effects.

- It’s all programmer needs to program machine.
- It’s all hardware designer needs to design machine.

Implementation: [of an ISA] (noun)
Hardware that executes instructions defined by ISA.
Instruction Set Architecture

ISA and Implementation Examples

ISA: SPARC International SPARC V9
Impl: Sun Microsystems UltraSPARC-II, UltraSPARC-III

ISA: Intel IA-32

Who ISA Developed For

- Compiler writers.
- Compute-intensive library writers.
 E.g., graphics and scientific libraries.

Instruction set requirements don’t change very much over time.
Scope of ISA Specification

Describes instruction codings, and what they should do.

Should specify action of all codings, used or not ...
Implementation

Two aspects of implementation: organization and hardware.

Organization:
Details of functional units, data paths, control, etc.

Also called microarchitecture. (NIB\(^1\)).

This includes memory system, bus, and CPU.

Hardware:
Logic design and packaging.

Course focus: ISA and organization, not hardware.

\(^1\) Not in book.
Technological Change and Computer Designer

Technology determines “raw materials” for designer.

Raw material: number of gates and their speed.

ISA lifetime can be decades.

Raw materials greatly change over this time.

So, design ISA for now and future.
How technological advancement affects processor.

Logic Speed, Clock Rate
No changes to organization or ISA.

Number of Transistors Available for Logic
Changes to organization and possible changes to ISA.

Memory Size
Change ISA to use larger address space.
Can use ISA having larger instruction codings.

Memory Speed Compared to Processor Speed
Include more sophisticated caching in organization.
Summary

What a computer engineer does:

- Develops an instruction set (ISA).
- Designs hardware to execute instruction set.

If instruction set poorly designed . . .

. . . many instructions will not be used (wasting silicon) . . .

. . . and instructions will execute slowly.

Why ISA design is surprisingly difficult:

- Hard to predict which instructions useful . . .
 . . . without writing and running software using instructions.

- Hard to predict which instructions fast . . .
 . . . in current and future technologies.