EE 4720 Homework 5 Due: 18 March 2001

Problem 1: Solve Problems 3 and 4 from Fall 2000 Homework 5, available via

Either: indicate the grade you assigned yourself or write “Did not solve.” A solution can be
provided along with a grade. It will be corrected but your grade will be used. If you opt not to
solve it you will receive full credit but will be hurting your ability to solve future problems.

Most of the problems below ask about the Alpha 2126/ implementation of the Alpha Architec-
ture. The answers to these questions can be found in Kessler 99, R. E. Kessler, “The Alpha 2126/
microprocessor,” IEEE Micro Magazine, March 1999, vol. 19, no. 2, pp. 2436, available via

______________________________________

Problem 2: Which of the dynamic scheduling methods described in class most closely matches
the 212647 What terminology does Kessler 99 use for the following three terms (as used in class):
Reorder Buffer, Commit, and Physical Register Number?

Problem 3: The 21264 is described as a four-way superscalar processor. What are the maximum
number of instructions that can issue per cycle? What are the maximum number of instructions
that can commit per cycle? How do these numbers differ from the corresponding values for the
default dynamically scheduled machine as described in class? Call the higher of these two numbers
. Why would DEC (okay, Compaq) dare not call the 21264 an z-way superscalar processor?

Problem 4: What is the size of the reorder buffer in the 212647 How is its use slightly different
than the one described in class?

Problem 5: The stages making up the 21264 (Figure 2 in Kessler 99) differ from the stages in
the dynamically scheduled DLX implementation (using the appropriate method) described in class.
For each 21264 stage indicate which DLX stage does the equivalent (or close) work. Consider Slot
1 to be an extension of the fetch stage.


http://www.ee.lsu.edu/ee4720/2000f/hw05.pdf
http://www.ee.lsu.edu/ee4720/2000f/hw05_sol.pdf
http://www.ee.lsu.edu/ee4720/kessler99.pdf

Problem 6: A gshare or gselect two-level predictor can perfectly predict the loop branches for
loops with a small, constant number of iterations, such as:

addi r1, r0O, #3
LOOP:

1w r2,0(xr3)

beqz r2, SKIP

sw 4(r3), r2
SKIP:

addi r3, r3, #8

subi r1, ri1, #1

bnez ri1, LOOP

Consider a processor using a gshare predictor with a 12-bit global history register. Would

the processor predict the last branch perfectly (after warmup and assuming no collisions in the
BHT)? Hint: Yes. Modify the loop above by adding code between LOOP and SKIP so that the
gshare predictor no longer predicts the last branch correctly. The number of loop iterations must
not change.

Problem 7: Suppose the code from the previous problem, translated to Alpha, ran on the Alpha
21264. Assuming no collisions, why would the modifications made in the previous problem not
remove the perfect prediction of the last branch?

(Information to solve the problem can be found on page 27 (PDF page 4) of


http://www.ee.lsu.edu/ee4720/kessler99.pdf
http://www.ee.lsu.edu/tca/mcf.pdf

