EE 4720 Homework 5 soution Due: 17 November 2000
Problem 1. The familiar loop below executes on a dynamically scheduled machine using a reorder
buffer to name destination registers. The machine has the following characteristics:

e Two-way superscalar. An unlimited number of write-backs per cycle.
e A 16-entry reorder buffer.
e A six-stage fully pipelined floating point multiply unit.

e Perfect branch target prediction. (Branch target in IF when branch is in ID.)

Show a pipeline execution diagram up to the fetch of the third iteration.

Explain why the first two iterations cannot be used to determine the CPI for a large number
of iterations in this case. Estimate the CPI for a large number of iterations (a pipeline execution
diagram is not necessary).

LOOP: ! LOOP = 0x1000

I Cycle 01 2 3 4 5 6 7 8 9 10 11
1d f0, 0(r1) IF ID L1 L2 WB
IF ID L1 L2 WB
muld f2, f0, f2 IF ID RS M1 M2 M3 M4 M5 M6 WB
IF ID RS M1 M2 M3 M4 M5 M6 WB
addi r1, ri1, #8 IF ID EX WB
IF ID EX WB
sub r2, rl, r3 IF ID RS EX WB
IF ID RS EX WB
bneq r2, LOOP IF ID RS B WB
IF ID RS B WB
xor rl10, ri11l, ri2 IF x IF x

and r13, ri4, rib
or ri6, r17, ri18
sgt 119, r20, r21

For clarity the first iteration is shown in black, the second in blue, and the third (just IF's) in . The first
two iterations can't be used to determine CP1 because they start differently, for example, in the first £2 is available, but
at the beginning of the second (eyele 3) the value for £2 1 not yet ready.

The CP1 for 2 large number of iterations would be limited by the multiply unit. The hardware can feteh and decode
at a rate of 3 cycles per iteration, but the multiply lateney is 6. Because there is a loop-carried dependency on the
multiplier input the multiplies have to be done one after another, and so execution is limited 1o 6 cyeles per iteration
(arter the reorder buffer lis). Since there are five instructions in an iteration the CP1 is limited to 2.

Problem 2: Unroll the loop in the problem above twice. (In the last homework it was unrolled
four times.) Again exploiting the associativity of multiplication, rearrange the multiplies to improve
the performance, but this time without using software pipelining. Why is software pipelining not
necessary here?

! Solution
LOOP: ! LOOP = 0x1000
I Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1d £0, 0(rD) IF ID L1 L2 WB IF ID L1 L2 WB
IF ID L1 L2 WB IF ...
1d f10, 8(r1) IF ID RS L1 L2 WB IF ID RS L1 L2 WB
IF ID RS L1 L2 WB
muld f4, f0, f10 IF ID RS M1 M2 M3 M4 M5 M6 WB
IF ID RS M1 M2 M3 M4 M5 M6 WB
IF ID RS M1 M2 M3 M4 M5 M6 WB

muld f2, f4, f2 IF ID RS M1 M2 M3 M4 M5 M6 WB

IF ID RS M1 M2 M3 M4 M5 M6 WB

IF ID RS M1
addi ri1, ri1, #16 IF ID EX WB IF ID EX WB IF ID EX WB
sub r2, ril, r3 IF ID RS EX WB IF ID RS EX WB
IF ID RS EX WB

bneq r2, LOOP IF IDB WB IF ID B WB IF ID B WB
xor ri10, ri11, ri12 IF x IF x IF x

and 1r13, ri4, rib
or ri6, r17, ri18
sgt 119, r20, r21

For clarity the irst iteration is shown in black, the second in blue, the third in orange, and the fourth (just an IF)
in purple. (A pipeline diagram was not required for the solution, but is given here to help deseribe the solution.)

An important feature of the solution is the way the multiplies are done. The code above is limited to execute at
a Tate Of §iX cycles per iteration because of the loop-carried dependency in the second multiply. (But this does twice s
mueh Work as the original coda.) In the poor solution below the code is half as Tast, limited to twelve cyeles per iteration
because the loop-carried dependency is a source in the first multiply and & destination in the second:

! WARNING: POOR Solution below!
LOOP: ! LOOP = 0x1000

1d f0, 0(rl)

1d f£10, 8(r1l)

muld £f2, f0, £2

muld f2, f10, £f2

addi r1, ri1, #16

sub r2, rl, r3

bneq r2, LOOP

xor rl10, ri1l, ri2

and ri13, ri4, rib5

or rl6, ri17, ri8

sgt r19, r20, r21
! WARNING: POOR Solution above!

Refer 1o the good solution for the Tollowing discussion.

Software p'\p@\‘mmg i3 N0t needed because dynamie scheduling allows instructions after the second mump\y 10 start
execution even before the second multiply starts. On 4 statically scheduled machine instructions after the second multiply
would have to wait. Software p'\p@,\m‘mg an be used 1o reduce the wait by moving the second mump\y 10 the next iteration.

Problem 3: The code below executes on a system using a one-level branch predictor with a
16-entry BHT. Which entries will the branches use?

The BHT QHU\/ numpers are snown in the letftmost column below. The QHU\/ numpers are bits 2:5 in the instruction
address, shown in the second column.

If the number of iterations is large, the prediction accuracy will be high. If a certain number of
additional nops are inserted before SKIP1 the prediction accuracy will drop. How many and why?

By msgrt'mg nop instructions the BHT Q\'\Uy used by the second and third branches will Qh&ﬂg@. Prediction aceuracy
Will Tall it the Tirst and second branch use the same entry since Their outeomes are a\ways ditferent from each other. Each
inserted nop increases the BHT Q\'\Uy number by ong, 13 nop's would pUt The second branch in QﬂUy 1, the same as the
first.

! Note: r2 is not modified inside the loop.

BHT En Addr LOOP: ! LOOP = 0x1000
0x1000: subi ri1, r1, #1
1 0x1004: ©bneq r2, SKIP1
0x1008: add r10, r10, rii
0x100c: nop
SKIP1:
4 0x1010: beqz r2, SKIP2
0x1014: add r12, ri12, ri3
SKIP2
6 0x1018: ©bneq rl, LOOP

Problem 4: Determine the prediction accuracy of a one-level branch predictor on each branch in
the code below. The predictor uses a 1024-entry BHT. There is a .5 probability that a loaded value
will be zero.

Bacause random numbers are loaded, the first branch (TO\\OWH\% LOUP) and the branch TO\\OW'\T\g SKIP2 can't be
predicted, so the accuracy will be about 50%.

The second branch (following SKIP1) follows the pattern N T N T Depending on how the BHT entry is
initialized, the prediction accuracy will be 50% or 0%.
The third braneh (following SKIP3) follows the pattern N T T T N T T T The prediction accuracy will

be 75% (the not taken is predicted taken after warm up).
The last branch (Tollowing SKIP4) is taken for all but the last iteration, the prediction accuracy Wil be 100% for
branches predicted after the Airst two iterations of the 100p.

LOOP:

addi r2, r2, #4

1w rl, 0(r2)

bneq r1, SKIP1

add ri10, r10, rii
SKIP1:

andi r3, r2, #4
bneq r3, SKIP2

add ri11, ri11, ri2
SKIP2:

begz rl, SKIP3

add ri12, ri2, rii
SKIP3:

andi r4, r2, #12
bneq r4, SKIP4
add ri13, ri3, rii
SKIP4:

sub r5, r2, r6
bneq r5, LOOP

Problem 5: How many BHT entries will the branches in the code above use in the middle of
its execution (explained below) in a two-level gselect predictor that uses 10 bits of global branch
history and 6 instruction address bits? The loop iterates many times, the middle of its execution
starts after many iterations.

The g\()bil\ nistory nas the TO\\OW'\ﬂg repeating pattern:
rNrNT rTrTT rNrTT rTrTT rNrNT rTrTT rNrTT rTrTT ..., where ris random and can be either T or
N. Each group QOFFQSPOI\GS 10 an iteration. The g\()b&\ history register contains ten outcomes. The g\()bil\ nistory when
pFQG'\QU\'\g the Tirst branch in the \()Op m'\gm 8ee rNrNT rTrTT, the g\ObQ\ mstory for the second branch m'\gm see NrNT
rTrTT r, and 80 On.

lgnor'mg the r's, each branch can see four pOSS'\D\Q g\()b&\ mstory p&tIQfﬂS (s‘me@, there are four sets of branch
outcomes in an iteration such a8 rNrNT and U\Qy oceur in the same order each t'\me). TQK'\ﬂg the g\()b&\ mS'EOY\/ into
account, there are 16 variation on each pm@m (SH\Q@ each pattern contains 4 I"S). Therefore each branch can see 64
diterent patterns. There will be & different BHT entry for each braneh and each pattern (S'H\QQ there are no QO\\'\S'\OT\S)
and so the total number of BHT entries is 16 x 4 x 5 = 320.

How many bits of global branch history are needed so that the branch following SKIP3 is
predicted very accurately?

The branch following SKIP3 Tollows the pattern N T T T N T T T To distinguish the not taken case
from the others the braneh predictor might 100k at the three previous outcomes of the SKIP3 branch. 1T they are all
taken it would predict not taken. That would require a global history length of 15. Howaver, it's possible 1o use & shorter
global history: 100k at the two previous outecomes of the SKIP3 and the SKIP1 branch. IT the Two last SKIP3 branches
are TT and the two last SKIP1 branches are TN, predict not taken. (DOI\'I forget that the global history contains all
branches in this 100p, but the other branches here are just Y\O'\SQ.) S0 the minimum global nistory size is just 10 outeomes.

