Name Solution

Computer Architecture

EE 4720
Final Examination

8 December 2000, 12:30-14:30 CST

Modified
Problem 1 (20 pts)
Problem 2 (14 pts)
Problem 3 (20 pts)
Problem 4 (17 pts)
Problem 5 (29 pts)
Alias Solution Exam Total _ (100 pts)

Good Luck!

Problem 1: New DLX instruction jalr.safe is like a jalr instruction except that it automatically returns
after a certain number of instructions in the called routine have been executed. Suppose r1 contains 0x1000
and r2 contains 23 when jalr.safe r1, r2 is executed. Execution would jump to address 0x1000 and PC+4
would be saved in r31. Nothing special happens if a jr r31 (a return) is executed within 23 instructions. If
after 23 instructions a return is not executed control will automatically return to the instruction following
jalr.safe. When jalr.safe is used the called procedure cannot call another procedure.

Note. The jalr.safe instruction might be used in time-critical systems to prevent a procedure from taking too long (U\()Ugh
it would probably be better 1o Dase the qutomatic return on time rather than an instruction Q()UM)A A procedure called using
jalr.safe Might compute & rough estimate of a return value rst, then start working on an accurate return value. If it returned
automatically the rough value would be used.

The instruction would be ‘“safe” if used properly but if used improperly would be very dangerous. Any procedure called with
jalr.safe must be written so that it could return any time. Otherwise, data structures might be left half-updated, code accessing
them later might execute incorrectly.

Real systems using watchdog timers rather than instructions like jalr.safe. A calling procedure would set a timer (sort of
like an alarm clock) to expire after the called procedure Was supposed to return. If the called procedure return on time the timer is
cancelled. Otherwise the timer expires and a timer-expiration interrupt handler is called. That handler might terminate the overdue
procedure.

()

M (5 pts) Show how jalr.safe might best be coded.

A g()()d Qod'mg is one that is similar to the Qod'mg Of exXisting instructions. Since jalr.safe is similar 10 jalr it would be best
10 use the same instruction type as jalr, it pOSS'\D\Q. The jalr instruction uses one source register, jalr. safe uses two. Thig
can be accommodated in the Type | Q()(ng used by jalr Dy us‘mg the rd flield as the second source.

(b) Moditfy the pipeline on the next page so that it executes the jalr.safe instruction.

e The output of the box is 1 if the corresponding stage contains a non-squashed instruction

that will advance to the next stage in the next cycle. (The instruction is neither squashed nor
stalled.)

) can be used for detecting return instructions, for jalr.safe instructions, etc.

Continued on next page.

Problem 1, continued:

M (7 pts) Show the hardware needed to properly save the automatic return address and count. (For the
automatic return address do not use the contents of r31, instead add a register for this address.)

M (2 pts) Base the return on the number of instructions that will complete, squashed instructions should not
be counted.

M (2 pts) Make sure jalr.safe can be squashed before it sets a return address.

Bf (2 pts) Generate a signal named Auto Return, it shall be true when there is to be an automatic return and
false other times.

M (2 pts) Explain what the controller must do when Auto Return is asserted.

The modifications appear in red below. When Auto Return is asserted instructions in IF, 1D, and EX are squashed and new input
10 the PC mux 18 selected.

Since the added hardware is in the MEM stage jarl.safe can be squashed. (\T it were in the 1D stage, Tor example, It MIgnt set &
return address before being squashed in the EX stage Dy an instruetion in the MEM St&g@.)

IF JID EX MEM WB
RN T
6.10 Addr Data H{ A Mem
11.15 Addr Data|f B ALU Add
)
AT pin gl oufjjme

ext.

Addr
Mem
Port
Data— IR IR IR IR
kA e By _ _
=
el -
[0
14
Ret Addr %
| |=jair || WE <
safe —T1DIn D Out
Count
WE
DIn DOut
—1Dec
Active
=Ret s Q
B R

Problem 2: The programs below run on statically and dynamically scheduled systems. All systems are
single issue (not superscalar), have perfect branch prediction, have an unlimited number of functional units,
and use non-blocking caches. The programs run for a large number of iterations, and the first 1w in every
iteration will miss the cache. On a cache miss data arrives 10 cycles after MEM or L2 is entered. The line size
is 1024 characters.

! Program 1 ! Program 2
LOOP: LOQOP:

1w r1, 0(r2) lw r1, 0(r2)
addi r2, r2, #1024 1w r2, 4(r2)
add r3, r3, ri add r3, r3, ri
bneq rl, LOOP bneq rl, LOOP

(a) Suppose the programs were are run on a statically scheduled machine and loop unrolling was being
considered. Note: The following important point was not included in the 2000 final exam. The statically
scheduled machine treats load misses like floating-point operations: it allows them to complete out of order
if there are no name or data dependencies with following instructions.

M (1 pts) For a statically scheduled system applying loop unrolling to Program 1 would improve performance:
(a) Mby a large amount; (b)] by a small amount; (c) [not at all; (d) [none of the above.

M (1 pts) For a statically scheduled system applying loop unrolling to Program 2 would improve performance:
(a) [] by a large amount; (b) [] by a small amount; (c) Mnot at all; (d) [] 1 do not wish to reveal my

intent.

M (5 pts) Explain the two answers above. In particular explain, if appropriate, why loop unrolling is more
effective on one program than the other.

Program 1 can easily be unrotled. Without 100p unrolling the processor would have to sutier one miss at a time, 8o the execution time
15 at least the number of iterations times the miss delay. In the unrolied 100p there can be several misses being serviced in paraliel
(s‘mee the cache is ﬂOT\D\OQK'mg), 80 the execution time is roughly the number of iterations in the unrolied 100p times the miss delay.
The number of iterations in the unrotied 100p is the number of iterations in the original loop divided by the degree of unrolling, 8o
the execution time is a 10T lower.

In program 2 the data to feteh on one iteration depends on the data fetehed in the previous iteration $o it cannot be unrolled.

(b) Suppose the programs were to be run as is (not unrolled).

M (1 pts) Compared to a statically scheduled machine, a dynamically scheduled machine would run Program
1: (a) @/much faster; (b) [] slightly faster; (c) [] about the same speed; (d) [] dimple.

M (1 pts) Compared to a statically scheduled machine, a dynamically scheduled machine would run Program

2: (a) [much faster; (b) @/slightly faster; (c) (] about the same speed; (d) []1 assume that if my answer
below is correct points will not be deducted for this choice.

M (5 pts) Explain the two answers above. In particular explain, if appropriate, why the dynamically scheduled
machine is more effective on one program than the other.

With dynam'\o soh@du\'mg several 10ads in program 1 can De active at once, and 50 axecution time will be gFQM\y reduced.

There is little dynamie scheduling can do for program 2 Tor the same reason it could not be unrolled.

Problem 3: The code below executes on a dynamically scheduled system with branch prediction but without
branch target prediction. The branch is predicted taken but it ultimately is not taken. The processor is
single-issue (not superscalar) but, conveniently, has an unlimited number of functional units and can handle
any number of write-backs per cycle. At most one instruction per cycle can be committed.

(a) The code below executes on such a machine in which the register map is not backed up when branches
are decoded. Registers are intentionally omitted from the last three instructions, assume those instructions
are not data-dependent on the loads.

M (6 pts) Complete the pipeline execution diagram for this system until all instructions complete.

M (2 pts) Show instruction commitment and squashing.

e Don’t forget to check for dependencies!

! Solution:

! Branch predicted taken, but branch is NOT taken.

! Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
lw r3, 0(rd) IF ID L1 L2 RS RS RS RS RS L2 WC

1w r1, 0(r2) IF ID L1 L2 RS L2 WB C

bneq r1, TARGET IF ID RS B WB C

xor r5, r6, r7 IFx IF ID EX WC
sgt r8, r9, ri0 IF ID EX WC
TARGET:

add ri11, ri12, ri3 IF ID EX WB X

sub ri14, r1b5, ri6 IF ID EX WB X

and rl17, r18, ri19 IF ID EX WB X

Problem 3, continued: (b) The code below executes on a version of the machine in which the register
map is backed up (checkpointed) when branches are decoded.

M (6 pts) Complete the pipeline execution diagram for this system until all instructions complete.

e Show instruction commitment and squashing.

! Solution:

! Branch predicted taken, but branch is NOT taken.

! Cycle 0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1w r3, 0(r4d) IF ID L1 L2 RS RS RS RS RS L2 WC

1w r1, 0(r2) IF ID L1 L2 RS L2 WB C

bneq r1, TARGET IF ID RS B WB ¢

xor rb5, r6, r7 IFx IF ID EX WB C

sgt r8, r9, ri10 IF ID EX WB C
TARGET:

add 1r24, r25, r26 IF ID EX WB

sub r21, r22, r23 IF ID EX WBx

and 19, r20, r30 IF ID EXx

(¢) Suppose the processor from the previous part has the following defect: it does not back up or restore the
register map, but it executes instructions as though it did. Suppose execution up until the code fragment
above is okay.

M (6 pts) Add registers to the last three instructions in the previous part so that the xor instruction executes
correctly but the sgt (set greater than) executes incorrectly.

The registers have been added. For sgt 1o execute incorrectly the register map entry for one of its source registars must be incorrect.
For that to happen an instruction past TARGET with destination r9 or r10 must be decoded. (1T does not have to go any farther
than ID, since the new register specinied in the register map for r9 or r10 will have the wrong value whether or not the instruction
completes write back.)

Problem 4: A system has a 1-megabyte (22° byte) two-way set-associative cache with 256-character blocks
and a 50-bit address space addressing 16-bit characters.

M (7 pts) Fill in the rounded boxes in the diagram below so that it describes this cache.

CPU Hi
() =T
Addr =
Data [€—
64
178 Tag 49:18] 178 Tag ' 49:18 l]
/I Addl’ Tag — /I Addr Tag —
Out H Out H
valid valid
Data Data
£ Addr 7— Addr
172 OUt 792 Out

M (5 pts) Show the smallest set of addresses that cannot all be in this cache at the same time.

Because the associativity is 2 the smallest set of addresses would have three elements. They would have the same index and diterent

tags. For example, {0x543210, 0x643210, 0x743210}.

M (5 pts) What would be the associativity of a fully associative cache with the same capacity and block size

as this one?

The associativity of a Tully associative cache is equal to the number of blocks in the cache. The cache in part (&j has 211 blocks, 80
a Tully associative cache with the same capacity and block size would have an associativity of 2Lt

Problem 5: Answer each question below.

(a) The DLX program below runs on a system using a one-level branch predictor with a 2'6-entry BHT,
each BHT entry is a two-bit saturating counter. The loop iterates many times.

Please do not confuse andi with addi.

LOOP:

addi r1, r1, #1
andi r2, ri1, #1
bneq r2, SKIP
nop

nop

nop

nop

SKIP:

sub r3, rl, r4
bneq r3, LOOP

M (4 pts) What are the best-case and worst-case prediction accuracies for the first branch. Briefly explain.

The WOrSt case oceurs when the countar is 2 when a not-taken branch is being predicted. The prediction will always be wrong,. (Worst
case accuracy of 0%.) Otherwise the prediction accuracy Will be 50%.

M (3 pts) What is the smallest BHT size for which there will not be a collision between the two branches?

The two branches are six (1102) instructions away from each other, and so their addresses will be the same at bit position 2 and
qirerent at DIt position 3. BIL position 2 is the LSB of the BHT address. I the BHT had two entries the two branenes would share
an element, it it had four or more, they would be in different entries.

(b) Consider a dynamically scheduled four-way superscalar processor with a common data bus (CDB) that
can handle two write-backs per cycle.

Ef (3 pts) Compare its speed to that of an ordinary dynamically scheduled two-way superscalar processor.
Justify your answer.

Ordinary n-way supersealar processors can write back n instructions per cyele.

The tour-way will be able 1o feteh and decode Taster than the two-way. Since write Dack is not always a bottleneck, It will be Taster.

M (3 pts) Compare its speed to that of an ordinary dynamically scheduled four-way superscalar processor.
Justify your answer.

Since it can't do as many write backs it will be slower.

()

M (4 pts) Why is branch target prediction potentially more useful for DLX jalr instructions than it is for bneq
and beqz instructions?

Because the target address from the branch instruction can be determined from the NPC and the instruction itself, whereas for the
jump & register value is needed, which might not be available for several cyeles.

()

M (4 pts) What is a predicated instruction? Show how predicated instructions can be used in the code below.
(Exact syntax is not important.)

beqz r1, SKIP
add r2, r2, r3
SKIP:

or r4d, r4, rb5

A predicated instruction is one thatl writes its result only if 4 condition (U\Q pYQ(Y\QMQ) is true.

(r1) add r2, r2, r3 ! r2 only written if rl nonzero.
or r4, r4, r5 ! Always executed.

(e) Consider a statically scheduled DLX implementation in which the floating-point add functional unit is
two stages and the floating-point multiply functional unit is four stages, and both are fully pipelined. An
exception can occur in any stage of the FP functional units.

M (4 pts) Show how the code below would execute to ensure precise exceptions.

muld £0, f2, f4 IF ID M1 M2 M3 M4 WB
addd £f2, £8, f10 IF ID ----> A1 A2 WB
or rl, r2, r3 IF ----> ID EX ME WB

M (4 pts) Suppose that floating-point instructions did not have precise exceptions. Show how a test instruction
could be used to ensure that an exception in muld was precise. Illustrate with a pipeline execution diagram.

muld £f0, f2, f4 IF ID M1 M2 M3 M4 WB

testexc IF ID ----> EX ME WB
addd f2, £8, f10 IF ----> ID A1 A2 WB
or rl, r2, r3 IF ID EX ME WB

10

