EE 4720 Homework 4 solution Due: 17 April 2000

Problem 1: The diagram below shows the execution of code on a dynamically scheduled machine
that uses physical register numbers to name destination operands. Show the state of the ID register
map, the commit register map, their free lists, and the physical register file for each cycle of the
execution below. In the register maps and file show only values related to registers £0 and £3.
Initially, £0=0, £1=10, £2=20, etc. Initially, register £0 is assigned to physical register 12 and £3
is assigned to physical register 15 (ignore the other architected registers). Initially, both free lists
contain physical register numbers {7,8,9,10,11}.

Note: As originally assigned the initial free lists did not contain register 11 and the pipeline
execution diagram showed reservation station (RS) segments. Both were mistakes and have been
corrected.

I Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
multf f0, f1, £f2 IF ID Q MO M1 M2 M3 M4 M5 WC

addf £3, f0, f2 IF ID Q A0 A1 WC

subf £0, f4, £f5 IF ID Q AO A1 WB C

addf f£3, f0, f5 IF ID Q A0 A1 WB C
addf £0, f2, f1 IF ID Q AO A1 WB C

The solution appears below. Blank entries in the tables below indicate that the value has not changed. The free
lists (S\'\OWT\ in braces, or curly bY&QKQtS) are for the cycle in which the opening brace appears. For @xgmp\@, in eycle 3 the
ID Tree list is 10,11 and the completion free list is 7,8,9,10,11 (DQQQUSQ there was no ehange since cycle 0). The
TOW in which a free list appears is not signineant, there is only one 1D free list and one completion free list.

Cycle

multf fO, f1,
addf £3, fO,
subf f0, f4,
addf £3, fO,
addf fO0, f2,

Cycle
ID Register

ID Free List

£2
£5
£5
f1

Map

f0
£3

0
IF

0

12
15

{73

Commit Register Map

f0
£3

Commit Free List

Cycle

12
15

{73

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
ID Q MO M1 M2 M3 M4 M5 WC
IF ID Q A0 A1 WC
IF ID Q AO A1 WB C
IF ID Q AO A1 WB C
IF ID Q AO A1 WB C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

7 9 11
8 10
8,9,10,11} {} {12} {12,15}
{8,9,10,11} {12,15,7}
{9,10,11} {12,15,7,8}
{10,11} {12,15,7,8,9}
{11}
7 9 11
8 10
8,9,10,11% {8,9,10,11,12}
{9,10,11,12,15}
{10,11,12,15,7}
{11,12,15,7,8}
{12,15,7,8,9}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Physical Register File

Cycle

7
8
9
10
11
12
13
14
15

30
0

200
220
-10
40
30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Problem 2: Repeat the problem above assuming that there is an exception in stage Al of the
execution of addf £3, f0, £5, as shown below: The solution can start at the cycle in which the
tables will differ from the solution above.

The solution QPPQ&YS balow. The QXQQpI'\Oﬂ is not handled until the instruction reaches QOTT\P\QUOH, at QyQ\Q 17. (SO
thae solution below is identical To the one above Up 1o Q\jQ\Q 17.) At QyQ\Q 17 the controller recovers from the QXQQPUOT\ by
Qopy'mg the eomp\@t'\on map and Qomp\cet'\on froe list to the 1D map and free list. The d'\agr&m balow shows this recovery
meg daone in one QyQ\Q, but real system m'\ght Take \ongfer. Bacause the add encountered an QXQQPUOH The value it writes
into the \"Qg'\StQY file may not he \/Q\'\G, that is indicated by QUQSUOH marks.

Cycle

multf f0, f1,
addf £3, fO,
subf f0, f4,
addf £3, fO,
addf fO0, f2,

Cycle
ID Register

ID Free List

f2
£2
£5
£5
f1

Map

f0
£3

Commit Register Map

C Free List

Cycle

f0
£3

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18
IF ID Q MO M1 M2 M3 M4 M5 WC

IF ID Q A0 A1 WC

IF ID Q AO Al WB C
IF ID Q AO*A1xWB Cx
IF ID Q A0 Al WB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
12 7 9 11 9
15 8 10 8
{7,8,9,10,11} {} {12} {12,15}

{8,9,10,11} {12,15,7}

{9,10,11} {10,11,12,15,7}
{10,11}
{11}
12 7 9
15 8
{7,8,9,10,11} {8,9,10,11,12}
{9,10,11,12,15%}
{10,11,12,15,7}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Physical Register File

Cycle

7
8
9
10
11
12
13
14
15

30
0

1

200
220
-10
7407
30

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Problem 3: The diagram below, of a dynamically scheduled processor, omits hardware that checks

whether the register map should be updated in the WB stage. (The hardware was described in

class.) Add the hardware to the diagram (at the same level of detail as other parts of the diagram).
solution d'\&gmm not yQ'E available.

(DD ooy O —{We)
— Control Op, RS RS’s Int. Unit wB
ROB #
b)) est]
p—
PG Reg. Map |_
6.10 Val.
Addr Data —|ROB # FP Add
RS’s Unit |
D) -
oz Val.
(D) gz 115 g
Addr DatafHRroB #
Dest ¥ addr
2134 g W=
v PC E A —— Addr o
5 tail ew val o
Addr £ ROB# [——IDIn o
0 ROB # — —
= Addr
l;)/lertn 2 stex [WB)
or 3 Din}_val
Data|] | e Pal:ln—
IR & head Reg. File Common Data Bus (CDB)

Dest

Val.
2 DIn

Problem 4. Draw a pipeline execution diagram for the DLX code below running on a dynamically
scheduled 4-way superscalar implementation with the following characteristics:

e Dynamically scheduled using a reorder buffer to name registers (method 1).
e One load/store functional unit with stages L1 and L2.

e No dynamic (hardware) branch prediction, all branches are predicted not taken. Branch
predictor uses the B functional unit and must wait for its operand like any other instruction.

e Four integer execution units.

Find the IPC for an execution of a large number of iterations. Show the execution for 14 cycles
or until there is enough information to compute the IPC, which ever is shorter.

I Note: runs for many iterations.
add r3, r0, r0
LOOP:! LOOP = 0x1000

lw rl, 4(r2)

add r3, r3, ri

lw 12, 8(r2)

bneq r2, LOOP

xor 10, rO, r0

The p'\p@\m@, axecution d'\agram is shown below. The m'\SpYQd'\QUOﬂ is detacted in QyQ\Q 7 and the correct path
is fetened in QyQ\Q 8. The xor and To\\ow'mg instructions get SqUASth (OY flushed from the reorder DUTTQY). since the
iteration that starts at Q\/Q\Q 8 Will Take the same number of QyQ\QS as the one that starts at QyQ\Q 1the IPC is % ~ 0.571.
! Solution
I Cycle 01 2 3 4 5 6 7 8

add r3, rO, rO IF ID EX WC
LOOP: ! LOOP = 0x1000

lw ri, 4(r2) IF ID L1 L2 WC IF ...
add r3, r3, ril IF ID RS RS EX WC IF ...
lw r2, 8(r2) IF ID RS L1 L2 WC IF ...
bneq r2, LOOP IF ID RS RS RS B WC

IF ...
xor r0, r0, r0O IF ID EX WB X

Problem 5: Repeat the problem above when the branch is statically predicted as taken and the
branch target is computed in the ID stage.

The p'\pe\me axecution d'\agram 18 shown below. Since the branch targ@t I Qomputed in 1D the I&Fg@t instruction
is fetched two QyQ\QS affer the branen. (\N'\U\ 2 branch targat butier it would be Tetched one QyQ\Q after the branch is
TQ‘EQUQG.) The hardware is able o feteh and decode ingtructions in this \OOp al the rate of 2 IPC, but the eomp\euon rate
is lower due 1o GQPQT\GQT\Q\QS between the loads. The second load must wait one QyQ\Q for the Tirst load to move out of
L1, a8 it does in QyQ\Q 3. The 1irst 10ad must wait for the second 10ad from the pf@\/'\OUS iteration to enter WB, a8 it does
in QyQ\Q 5. Baecause instructions are meg fatened faster than U\Qy are ng\ﬂ committed somae resource (SUQh ag reorder
butier slots or reservation SU;U()T\S) Will be used up. Wwhen that hﬁprﬁS (T\Ot shown DQ\O\N) instructions will stall in 1D
and feten will GYOp 10 a rate of % instructions per QyQ\Q. This is much Taster than % from the PY@V'\OUS prob\em but still
legs than the 4 1IPC that the processor I QQP&D\Q of.

! Solution
I Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13
add r3, r0O, rO IF ID EX WC
LOOP: ! LOOP = 0x1000
lw ri, 4(r2) IF ID L1 L2 WC
IF ID RS L1 L2 WC
IF ID RS RS L1 L2 WC
IF ID RS RS RS L1 L2 WC
I Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13
add r3, r3, ril IF ID RS RS EX WC
IF ID RS RS RS EX WC
IF ID RS RS RS RS EX WC
IF ID RS RS RS RS RS EX WC
lw r2, 8(r2) IF ID RS L1 L2 WC
IF ID RS RS L1 L2 WC
IF ID RS RS RS L1 L2 WC
IF ID RS RS RS RS L1 L2 WC
bneq r2, LOOP IF ID RS RS RS B WC
IF ID RS RS RS RS B WC
IF ID RS RS RS RS RS B WC
IF ID RS RS RS RS RS RS B WC
xor r0, r0, r0O IF x IFx IF x IF x
I Cycle 01 2 3 4 5 6 7 8 9 10 11 12 13

Problem 6: Repeat the superscalar problem when the branch is statically predicted taken and in
which the address of LOOP it 0x1004.

I Note: runs for many iterations.
add r3, r0, r0
LOCP:! LOOP = 0x1004

lw r1, 4(r2)

add r3, r3, ri

lw r2, 8(r2)

bneq r2, LOOP

xor 10, r0, r0

‘The pipeline execution diagram is shown below. Because of alignment the iNstructions T0r one iteration are fetened
N Two groups. (\ﬂ the previous examp\e the four instructions in an iteration neatly it on one ngUp.) This adds an extra
cyele, 80 instructions are fetened at a rate of % IPC, which is the samae rate at which they are executed. 50, even though
instructions are fetehed at a lower rate execution occurs at the same rate because of GQPQHGQHQ'\QS.

! Solution
I Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
add r3, r0O, rO IF ID EX WC
LOOP: ! LOOP = 0x1004
lw ri, 4(r2) IF ID L1 L2 WC
IF ID L1 L2 WC
IF ID L1 L2 WC
IF ID L1 L2 WC
add r3, r3, r1 IF ID RS RS EX WC
IF ID RS RS EX WC
IF ID RS RS EX WC
IF ID RS RS EX WC
lw r2, 8(r2) IF ID RS L1 L2 WC
IF ID RS L1 L2 WC
IF ID RS L1 L2 WC
IF ID RS L1 L2 WC
bneq r2, LOOP IF ID RS RS B WC
IF ID RS RS B WC
IF ID RS RS B WC
IF ID RS RS B WC
xor 10, r0, r0 IF IDx IF IDx IF IDx IF IDx IF IDx IF IDx
I Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

