
EE 4720 Homework 2 Solution Due: 4 October 1999

Problem 1: Suppose the coding of DLX instructions were changed so the destination appeared
before the source operands, as shown in the codings below:

New Type R:
Opcode

0

0 5

rd

6 10

rs1

11 15

rs2

16 20

func

21 31

New Type I:
Opcode

0 5

rd

6 10

rs1

11 15

Immediate

16 31

Type J: (no change)
Opcode

0 5

Offset

6 31

Show the changes needed to the pipeline below to implement this new ISA. The changes should
only effect the ID and WB stages. If there are differences in the control inputs to multiplexors or
other units, explain what those differences are.

Make sure your design executes store instructions correctly.

Changes shown in red.

sign
ext.

IR

Addr

6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

16..20
6..10

=Store

1



Problem 2: The program below executes on the DLX implementation shown below. The imple-
mentation uses forwarding (bypassing) to avoid some data hazards and stalls to avoid others. All
forwarding paths are shown. (If a needed forwarding path is not there, sorry, you’ll have to stall.)
A value can be read from the register file in the same cycle it is written. The destination field in
the beqz is zero. Instructions are nulled (squashed) in this problem by replacing them with slt
r0,r0,r0. All instructions stall in the ID stage.

! Initially, r1=0x101, r2=0x202, r3=0x303
! MEM[0x103] = 0xfe
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0
START: ! START = 0x50
lb r1, 2(r1)
addi r1, r1, #3
or r1, r1, r2
beqz r2, SKIP !(taken)
add r3, r1, r2
sub r0, r0, r0
sub r0, r0, r0
SKIP:
xor r3, r1, r3
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

The table below shows the contents of pipeline registers and changes to architecturally visible
registers r1-r31 over time. Cycle zero is the time that lb is in instruction fetch. The first two
columns are completed; fill in the rest of the table. Use a “?” for the value of the “immediate field”
of a type R instruction and for the output of the memory when no memory read is performed.
Show pipeline register values even if they’re not used. Assume that the ALU performs the branch
target computation even though it was already computed in ID. The row labeled “Reg. Chng.”
shows a new register value that is available at the beginning of the cycle. If no register value is
written leave the entry blank.

Hints: See Spring 1999 HW 3 for a similar problem. One feature of the solution would not be
present if lb were replaced by a addi. Another feature may not be present if lb were replaced by
lw.

2



Completed table appears below.

Cycle 0 1 2 3 4 5 6 7 8 9 10

PC 0x50 0x54 0x58 0x58 0x5c 0x60 0x6c 0x70 0x74 0x78 0x7c

IF/ID.IR sub lb addi addi or beqz add xor sub sub sub

Reg. Chng. r0←0 r0←0 r0←0 r0←0 r0←0 r1←-2 r0←0 r1←1 r1←203 r0←0 r0←0

ID/EX.IR sub sub lb slt addi or beqz slt xor sub sub

ID/EX.A 0 0 0x101 0 0x101 -2 0x202 0 0x203 0 0

ID/EX.B 0 0 0x101 0 0x101 0x202 ? 0 0x303 0 0

ID/EX.IMM ? ? 2 ? 3 ? 3 ? ? ? ?

EX/MEM.IR sub sub sub lb slt addi or beqz slt xor sub

EX/MEM.ALU 0 0 0 0x103 0 1 0x203 0x6c/4 0 0x100 0

EX/MEM.B 0 0 0 0x101 0 0x101 0x202 0 0 0 0

MEM/WB.IR sub sub sub sub lb slt addi or beqz slt xor

MEM/WB.ALU 0 0 0 0 0x103 0 1 0x203 0x6c/4 0 0x100

MEM/WB.MD ? ? 0 0 -2 ? ? ? ? ? ?

To help solve the problem, find a pipeline execution diagram for the code (shown below). Cycle numbers in diagram
and table match.

! Initially, r1=0x101, r2=0x202, r3=0x303
! MEM[0x103] = 0xfe
sub r0, r0, r0
sub r0, r0, r0
! Cycle 0 1 2 3 4 5 6 7 8 9 10
START: ! START = 0x50
lb r1, 2(r1) IF ID EX MEM WB
addi r1, r1, #3 IF ID --> EX MEM WB
or r1, r1, r2 IF --> ID EX MEM WB
beqz r2, SKIP !(taken) IF ID EX MEM WB
add r3, r1, r2 IFx
sub r0, r0, r0
sub r0, r0, r0
SKIP:
xor r3, r1, r3 IF ID EX MEM WB
sub r0, r0, r0 IF ID EX MEM
sub r0, r0, r0 IF ID EX
sub r0, r0, r0 IF ID

3



Problem 3: Consider the program:
LOOP:
lw r1, 0(r2)
add r3, r1, r3
addi r2, r2, #4
bneq r1, LOOP
or r4, r5, r6

For each implementation below provide a pipeline execution diagram showing execution up to
the third fetch of lw and determine the CPI for a large number of iterations.

Not Bypassed:
sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Solution:

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
LOOP:
lw r1, 0(r2) IF ID EX MEM WB IF ID EX MEM WB IF
add r3, r1, r3 IF ID -----> EX MEM WB IF ID -----> EX MEM WB
addi r2, r2, #4 IF -----> ID EX MEM WB IF -----> ID EX MEM WB
bneq r1, LOOP IF ID EX MEM WB IF ID EX MEM WB
or r4, r5, r6 IFx IFx

Each iteration takes the same amount of time, 7 cycles, and contains 4 instructions, for a CPI of 7
4 CPI =

1.75CPI.

4



Bypassed:
sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Solution:

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
LOOP:
lw r1, 0(r2) IF ID EX MEM WB IF ID EX MEM WB IF
add r3, r1, r3 IF ID --> EX MEM WB IF ID --> EX MEM WB
addi r2, r2, #4 IF --> ID EX MEM WB IF --> ID EX MEM
bneq r1, LOOP IF ID EX MEM WB IF ID EX
or r4, r5, r6 IFx IFx

Each iteration takes the same amount of time, 6 cycles, and contains 4 instructions, for a CPI of 6
4 CPI = 1.5CPI.

Problem 4: Schedule (rearrange) the instructions in the program used in the previous problem
to improve execution speed. (Do not change what the program does!). Show pipeline execution
diagrams and determine CPI for the two implementations.

Solution:

! Not bypassed.
! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
LOOP:
lw r1, 0(r2) IF ID EX MEM WB IF ID EX MEM WB IF
addi r2, r2, #4 IF ID EX MEM WB IF ID EX MEM WB
add r3, r1, r3 IF ID -> EX MEM WB IF ID -> EX MEM
bneq r1, LOOP IF -> ID EX MEM WB IF -> ID EX
or r4, r5, r6 IFx IFx

Each iteration takes the same amount of time, 6 cycles, and contains 4 instructions, for a CPI of 6
4

CPI = 1.5CPI.
Solution:

! Bypassed Implementation
! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12
LOOP:
lw r1, 0(r2) IF ID EX MEM WB IF ID EX MEM WB IF
addi r2, r2, #4 IF ID EX MEM WB IF ID EX MEM WB
add r3, r1, r3 IF ID EX MEM WB IF ID EX MEM
bneq r1, LOOP IF ID EX MEM WB IF ID EX
or r4, r5, r6 IFx IFx

Each iteration takes the same amount of time, 5 cycles, and contains 4 instructions, for a CPI of 5
4 CPI =

1.25CPI.

5



Problem 5: Show the changes needed to implement the predicated instructions presented in class.
(Set 4, page 25, as of this writing.) Describe the instruction format and show any datapath and
control changes to the implementation below.

The solution described below adds predicated type-R instructions.
First, an instruction coding needs to be found. The coding should fit naturally into the DLX ISA such that

implementations would be changed as little as possible. Since this is an addition to DLX, existing DLX instructions must
not be changed.

Predicated versions of type-R instructions will be added. The predicated instructions have new opcodes, the new
opcodes will not be listed. (As with other type-R instructions, the opcode is in the Func field.)

Unless the format is changed, there is no room to specify the predicate register. Rather than changing the format,
the interpretation of the fields will be changed. The destination filed (〈rd〉) will specify the predicate and 〈rs1〉 will
specify the first source operand (as usual) and the destination (they will always be the same). For example, instruction
(r1) add r2, r2, r3 is coded:
Type R:

Opcode

0

0 5

rs1

2

6 10

rs2

3

11 15

rd

1

16 20

func

add.pn

21 31
where opcode add.pn indicates a predicated add which writes its result of the predicate is non-zero. (If the Func

field contained an ordinary add the instruction would be add r1, r2, r3.)
Here are some not-so-good alternative codings: Add a third source operand field, increasing the instruction size to 40

bits (maybe use the 3 left over bits for more opcode space). If all instructions are 40 bits, then old code won’t work and so
this is really a new ISA, not an extension of an existing one. If only predicated instructions are 40 bits, then implementation
will be a challenge. First (this will be covered later in the semester) it’s alot harder to build a memory system that returns
any five consecutive bytes. It’s much easier to fetch a power-of-two bytes at an aligned address. Another problem is that
before the PC is incremented one has to find the instruction size, in the implementations considered size is determined in
the cycle after its needed. If the PC were incremented in the beginning of the fetch cycle we could determine whether the
previous instruction (in ID) was predicated, but the IF critical path length would be long in that case.

Now that the coding is determined, the pipeline must be modified to implement it. Predicated instructions need
three register values, that can’t be avoided so a third read port must be added to the register file (see the illustration
below). (Some real ISAs have special predicate registers, so additional general purpose register file ports are not needed.)

Predicated instructions have the destination register in a different place (bits 6 to 10) than other type-R instructions
(16 to 20). The decode logic must recognize predicated instructions and place the correct destination register in the
ID/EX.RD pipeline latch. (See illustration.)

An instruction is called predicated because its result isn’t written back if the predicate is false. This will be
implemented by replacing the destination register with a 0 in the EX stage. An =0 checks the predicate to see if it’s
zero. The predicate may come from the register file or be bypassed from MEM or WB. In ordinary predicated instructions
the predicate is false if the predicate register is zero. In inverted predicate instructions ((!r1) add r2, r2, r3)

the predicate is false if the predicate register is non-zero. An exclusive or gate is used to invert the output of =0 for

inverted instructions. (The output of =Pred 0 is true if an inverted predicated instruction is present.)
If the predicate were tested in ID then it would not be possible to use the result of an immediately preceding

instruction.

6



Changes are shown in red:

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

= Type R

11..15

16..20

31

0

= Link CTI

= Type I
ALU

RD RD

= Non-link
CTI

= Load

=Store

RD

00

01

10
11

00

01

10

11

MSB

LSB

(Not Connected)

Addr Data
16..20 C

0

= Pred

= Pred 0

100

6..10
100

P

P0

=0

7


